CRISPR-Cas9 is a revolutionary genome-editing technology that has enormous potential for the treatment of genetic diseases. However, the lack of efficient and safe, non-viral delivery systems has hindered its clinical application. Here, we report on the application of polymeric and hybrid microcarriers, made of degradable polymers such as polypeptides and polysaccharides and modified by silica shell, for delivery of all CRISPR-Cas9 components. We found that these microcarriers mediate more efficient transfection than a commercially available liposome-based transfection reagent (>70% vs. <50% for mRNA, >40% vs. 20% for plasmid DNA). For proof-of-concept, we delivered CRISPR-Cas9 components using our capsules to dTomato-expressing HEK293T cells-a model, in which loss of red fluorescence indicates successful gene editing. Notably, transfection of indicator cells translated in high-level dTomato knockout in approx. 70% of transfected cells. In conclusion, we have provided proof-of-principle that our micro-sized containers represent promising non-viral platforms for efficient and safe gene editing.
An important area in modern malignant tumor therapy is the optimization of antitumor drugs pharmacokinetics. The use of some antitumor drugs is limited in clinical practice due to their high toxicity. Therefore, the strategy for optimizing the drug pharmacokinetics focuses on the generation of high local concentrations of these drugs in the tumor area with minimal systemic and tissue-specific toxicity. This can be achieved by encapsulation of highly toxic antitumor drug (vincristine (VCR) that is 20–50 times more toxic than widely used the antitumor drug doxorubicin) into nano- and microcarriers with their further association into therapeutically relevant cells that possess the ability to migrate to sites of tumor. Here, we fundamentally examine the effect of drug carrier size on the behavior of human mesenchymal stem cells (hMSCs), including internalization efficiency, cytotoxicity, cell movement, to optimize the conditions for the development of carrier-hMSCs drug delivery platform. Using the malignant tumors derived from patients, we evaluated the capability of hMSCs associated with VCR-loaded carriers to target tumors using a three-dimensional spheroid model in collagen gel. Compared to free VCR, the developed hMSC-based drug delivery platform showed enhanced antitumor activity regarding those tumors that express CXCL12 (stromal cell-derived factor-1 (SDF-1)) gene, inducing directed migration of hMSCs via CXCL12 (SDF-1)/CXCR4 pathway. These results show that the combination of encapsulated antitumor drugs and hMSCs, which possess the properties of active migration into tumors, is therapeutically beneficial and demonstrated high efficiency and low systematic toxicity, revealing novel strategies for chemotherapy in the future.
Stem cell engineeringthe manipulation and functionalization of stem cells involving genetic modificationcan significantly expand their applicability for cell therapy in humans. Toward this aim, reliable, standardized, and cost-effective methods for cell manipulation are required. Here we explore the potential of magnetic multilayer capsules to serve as a universal platform for nonviral gene transfer, stem cell magnetization, and magnetic cell separation to improve gene transfer efficiency. In particular, the following experiments were performed: (i) a study of the process of internalization of magnetic capsules into stem cells, including capsule co-localization with established markers of endo-lysosomal pathway; (ii) characterization and quantification of capsule uptake with confocal microscopy, electron microscopy, and flow cytometry; (iii) intracellular delivery of messenger RNA and separation of gene-modified cells by magnetic cell sorting (MACS); and (iv) analysis of the influence of capsules on cell proliferation potential. Importantly, based on the internalization of magnetic capsules, transfected cells became susceptible to external magnetic fields, which made it easy to enrich gene-modified cells using MACS (purity ∼95%), and also to influence their migration behavior. In summary, our results underline the high potential of magnetic capsules in stem cell functionalization, namely (i) to increase gene-transfer efficiency and (ii) to facilitate enrichment and targeting of transfected cells. Finally, we did not observe a negative impact of the capsules used on the proliferative capacity of stem cells, proving their high biocompatibility.
Photothermal therapy (PTT) has attracted increasing interest as a complementary method to be used alongside conventional therapies. Despite a great number of studies in this field, only a few have explored how temperatures affect the outcome of the PTT at nanoscale. In this work, we study the necrosis/apoptosis process of cancerous cells that occurs during PTT, using a combination of local laser heating and nanoscale fluorescence thermometry techniques. The temperature distribution within a whole cell was evaluated using fluorescence lifetime imaging microscopy during laser-induced hyperthermia. For this, gold nanorods were utilized as nanoheaters. The local near-infrared laser illumination produces a temperature gradient across the cells, which is precisely measured by nanoscale thermometry. This allows one to optimize the PTT conditions by varying concentration of gold nanorods associated with cells and laser power density. During the PTT procedure, such an approach enables an accurate determination of the percentages of apoptotic and necrotic cells using 2D and 3D models. According to the performed cell experiments, the influence of temperature increase during the PTT on cell death mechanisms has been verified and determined. Our investigations can improve the understanding of the PTT mechanisms and increase its therapeutic efficiency while avoiding any side effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.