We sequenced the genomes of a ~7,000 year old farmer from Germany and eight
~8,000 year old hunter-gatherers from Luxembourg and Sweden. We analyzed these and other
ancient genomes1–4 with 2,345 contemporary humans to show that most
present Europeans derive from at least three highly differentiated populations: West
European Hunter-Gatherers (WHG), who contributed ancestry to all Europeans but not to Near
Easterners; Ancient North Eurasians (ANE) related to Upper Paleolithic Siberians3, who contributed to both Europeans and Near
Easterners; and Early European Farmers (EEF), who were mainly of Near Eastern origin but
also harbored WHG-related ancestry. We model these populations’ deep relationships
and show that EEF had ~44% ancestry from a “Basal Eurasian”
population that split prior to the diversification of other non-African lineages.
We sequenced genomes from a ~7,000 year old early farmer from Stuttgart in Germany, an ~8,000 year old hunter-gatherer from Luxembourg, and seven ~8,000 year old hunter-gatherers from southern Sweden. We analyzed these data together with other ancient genomes and 2,345 contemporary humans to show that the great majority of present-day Europeans derive from at least three highly differentiated populations: West European Hunter-Gatherers (WHG), who contributed ancestry to all Europeans but not to Near Easterners; Ancient North Eurasians (ANE), who were most closely related to Upper Paleolithic Siberians and contributed to both Europeans and Near Easterners; and Early European Farmers (EEF), who were mainly of Near Eastern origin but also harbored WHG-related ancestry. We model these populations' deep relationships and show that EEF had ~44% ancestry from a "Basal Eurasian" lineage that split prior to the diversification of all other non-African lineages.
It is commonly thought that human genetic diversity in non-African populations was shaped primarily by an out-of-Africa dispersal 50–100 thousand yr ago (kya). Here, we present a study of 456 geographically diverse high-coverage Y chromosome sequences, including 299 newly reported samples. Applying ancient DNA calibration, we date the Y-chromosomal most recent common ancestor (MRCA) in Africa at 254 (95% CI 192–307) kya and detect a cluster of major non-African founder haplogroups in a narrow time interval at 47–52 kya, consistent with a rapid initial colonization model of Eurasia and Oceania after the out-of-Africa bottleneck. In contrast to demographic reconstructions based on mtDNA, we infer a second strong bottleneck in Y-chromosome lineages dating to the last 10 ky. We hypothesize that this bottleneck is caused by cultural changes affecting variance of reproductive success among males.
The indigenous populations of inner Eurasia, a huge geographic region covering the central Eurasian steppe and the northern Eurasian taiga and tundra, harbor tremendous diversity in their genes, cultures and languages. In this study, we report novel genome-wide data for 763 individuals from Armenia, Georgia, Kazakhstan, Moldova, Mongolia, Russia, Tajikistan, Ukraine, and Uzbekistan. We furthermore report additional damage-reduced genome-wide data of two previously published individuals from the Eneolithic Botai culture in Kazakhstan (~5,400 BP). We find that present-day inner Eurasian populations are structured into three distinct admixture clines stretching between various western and eastern Eurasian ancestries, mirroring geography. The Botai and more recent ancient genomes from Siberia show a decrease in contribution from so-called “ancient North Eurasian” ancestry over time, detectable only in the northern-most “forest-tundra” cline. The intermediate “steppe-forest” cline descends from the Late Bronze Age steppe ancestries, while the “southern steppe” cline further to the South shows a strong West/South Asian influence. Ancient genomes suggest a northward spread of the southern steppe cline in Central Asia during the first millennium BC. Finally, the genetic structure of Caucasus populations highlights a role of the Caucasus Mountains as a barrier to gene flow and suggests a post-Neolithic gene flow into North Caucasus populations from the steppe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.