Peripheral artery disease (PAD) is a leading cause of cardiovascular morbidity and mortality1; however, the extent to which genetic factors increase risk for PAD is largely unknown. Using electronic health record data, we performed a genome-wide association study in the Million Veteran Program testing ~32 million DNA sequence variants with PAD (31,307 cases and 211,753 controls) across veterans of European, African, and Hispanic ancestry. The results were replicated in an independent sample of 5,117 PAD cases and 389,291 controls from UK Biobank. We identified 19 PAD loci, 18 of which have not been previously reported. 11 of the 19 loci were associated with disease in three vascular beds (coronary, cerebral, peripheral), including LDLR, LPL, and LPA, suggesting that therapeutic modulation of LDL cholesterol, the LPL pathway or circulating lipoprotein(a) may be efficacious for multiple atherosclerotic disease phenotypes. Conversely, 4 of the variants appeared to be specific for PAD, including F5 p.R506Q, highlighting the pathogenic role of thrombosis in the peripheral vascular bed and providing genetic support for Factor Xa inhibition as a therapeutic strategy for PAD. Our results highlight mechanistic similarities and differences among coronary, cerebral, and peripheral atherosclerosis and provide therapeutic insights.
IMPORTANCE With improved survival, heart failure (HF) has become a major complication for individuals with human immunodeficiency virus (HIV) infection. It is unclear if this risk extends to different types of HF in the antiretroviral therapy (ART) era. Determining whether HIV infection is associated with HF with reduced ejection fraction (HFrEF), HF with preserved ejection fraction (HFpEF), or both is critical because HF types differ with respect to underlying mechanism, treatment, and prognosis. OBJECTIVES To investigate whether HIV infection increases the risk of future HFrEF and HFpEF and to assess if this risk varies by sociodemographic and HIV-specific factors. DESIGN, SETTING, AND PARTICIPANTS This study evaluated 98 015 participants without baseline cardiovascular disease from the Veterans Aging Cohort Study, an observational cohort of HIV-infected veterans and uninfected veterans matched by age, sex, race/ethnicity, and clinical site, enrolled on or after April 1, 2003, and followed up through September 30, 2012. The dates of the analysis were October 2015 to November 2016. EXPOSURE Human immunodeficiency virus infection. MAIN OUTCOMES AND MEASURES Outcomes included HFpEF (EF≥50%), borderline HFpEF (EF 40%–49%), HFrEF (EF<40%), and HF of unknown type (EF missing). RESULTS Among 98 015 participants, the mean (SD) age at enrollment in the study was 48.3 (9.8) years, 97.0% were male, and 32.2% had HIV infection. During a median follow-up of 7.1 years, there were 2636 total HF events (34.6% were HFpEF, 15.5% were borderline HFpEF, 37.1% were HFrEF, and 12.8% were HF of unknown type). Compared with uninfected veterans, HIV-infected veterans had an increased risk of HFpEF (hazard ratio [HR], 1.21; 95% CI, 1.03–1.41), borderline HFpEF (HR, 1.37; 95% CI, 1.09–1.72), and HFrEF (HR, 1.61; 95% CI, 1.40–1.86). The risk of HFrEF was pronounced in veterans younger than 40 years at baseline (HR, 3.59; 95% CI, 1.95–6.58). Among HIV-infected veterans, time-updated HIV-1 RNA viral load of at least 500 copies/mL compared with less than 500 copies/mL was associated with an increased risk of HFrEF, and time-updated CD4 cell count less than 200 cells/mm3 compared with at least 500 cells/mm3 was associated with an increased risk of HFrEF and HFpEF. CONCLUSIONS AND RELEVANCE Individuals who are infected with HIV have an increased risk of HFpEF, borderline HFpEF, and HFrEF compared with uninfected individuals. The increased risk of HFrEF can manifest decades earlier than would be expected in a typical uninfected population. Future research should focus on prevention, risk stratification, and identification of the mechanisms for HFrEF and HFpEF in the HIV-infected population.
Objective Social determinants of health (SDoH) are nonclinical dispositions that impact patient health risks and clinical outcomes. Leveraging SDoH in clinical decision-making can potentially improve diagnosis, treatment planning, and patient outcomes. Despite increased interest in capturing SDoH in electronic health records (EHRs), such information is typically locked in unstructured clinical notes. Natural language processing (NLP) is the key technology to extract SDoH information from clinical text and expand its utility in patient care and research. This article presents a systematic review of the state-of-the-art NLP approaches and tools that focus on identifying and extracting SDoH data from unstructured clinical text in EHRs. Materials and Methods A broad literature search was conducted in February 2021 using 3 scholarly databases (ACL Anthology, PubMed, and Scopus) following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A total of 6402 publications were initially identified, and after applying the study inclusion criteria, 82 publications were selected for the final review. Results Smoking status (n = 27), substance use (n = 21), homelessness (n = 20), and alcohol use (n = 15) are the most frequently studied SDoH categories. Homelessness (n = 7) and other less-studied SDoH (eg, education, financial problems, social isolation and support, family problems) are mostly identified using rule-based approaches. In contrast, machine learning approaches are popular for identifying smoking status (n = 13), substance use (n = 9), and alcohol use (n = 9). Conclusion NLP offers significant potential to extract SDoH data from narrative clinical notes, which in turn can aid in the development of screening tools, risk prediction models, and clinical decision support systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.