The "isomorphic subtype of diffuse astrocytoma" was identified histologically in 2004 as a supratentorial, highly differentiated glioma with low cellularity, low proliferation and focal diffuse brain infiltration. Patients typically had seizures since childhood and all were operated on as adults. To define the position of these lesions among brain tumours, we histologically, molecularly and clinically analysed 26 histologically prototypical isomorphic diffuse gliomas. Immunohistochemically, they were GFAP-positive, MAP2-and CD34-negative and nuclear ATRX expression was retained. All 24 cases sequenced were IDH-wildtype. In cluster analyses of DNA-methylation data, isomorphic diffuse gliomas formed a group clearly distinct from other glial/glio-neuronal brain tumours and normal hemispheric tissue. It was most closely related to paediatric MYB/MYBL1 altered diffuse astrocytomas and angiocentric gliomas. 13/25 (52%) of isomorphic diffuse gliomas had copy number alterations of MYBL1 or MYB. Gene fusions of MYBL1 or MYB with various gene partners were detected in 11/22 (50%). Gene fusions were associated with increased RNA-expression of the respective MYBfamily gene in 83%. Integrating copy number alterations and RNA sequencing data, 20/26 (77%) had either MYBL1 (54%) or MYB (23%) alterations. Clinically, 89% of patients were seizure free after surgery and all had a good outcome. In summary, we here define a distinct tumour class with a concise morphology, a typical DNA-methylation profile and frequent MYBL1 and MYB alterations. It occurs both in children and adults and has a benign disease course. For classification, we propose the term "isomorphic diffuse glioma, MYBL1/MYB altered, WHO grade I". DNA-methylation profiling is well suited to identify these tumours.
Glioblastomas are cytogenetically heterogeneous tumors that frequently display alterations of chromosomes 7, 9p, and 10q. We used high-density (500K) single-nucleotide polymorphism arrays to investigate genome-wide copy number alterations and loss of heterozygosity in 35 primary glioblastomas. We focused on the identification and detailed characterization of alterations involving the most frequently altered chromosomes (chromosomes 7, 9, and 10), the identification of distinct prognostic subgroups of glioblastomas based on the cytogenetic patterns of alteration for these chromosomes, and validation of their prognostic impact in a larger series of tumors from public databases. Gains of chromosome 7 (97%), with or without epidermal growth factor receptor (EGFR) amplification, and losses of chromosomes 9p (83%) and 10 (91%) were the most frequent alterations. Such alterations defined five different cytogenetic groups with a significant effect on patient survival; notably, EGFR amplification (29%) was associated with a better survival among older patients, as confirmed by multivariate analysis of a larger series of glioblastomas from the literature. In addition, our results provide further evidence about the relevance of other genes (eg, EGFR, CDKN2A/B, MTAP) in the pathogenesis of glioblastomas. Altogether, our results confirm the cytogenetic heterogeneity of glioblastomas and suggest that their stratification based on combined assessment of cytogenetic alterations involving chromosomes 7, 9, and 10 may contribute to the prognostic evaluation of glioblastomas. ( J Mol Diagn 2011, 13: 634 -647;
Despite the increasing knowledge about the genetic alterations and molecular pathways involved in gliomas, few studies have investigated the association between the gene expression profiles (GEP) and both cytogenetics and histopathology of gliomas. Here, we analyzed the GEP (U133Plus2.0 chip) of 40 gliomas (35 astrocytic tumors, 3 oligodendrogliomas, and 2 mixed tumors) and their association with tumor cytogenetics and histopathology. Unsupervised and supervised analyses showed significantly different GEP in low- vs high-grade gliomas, the most discriminating genes including genes involved in the regulation of cell proliferation, apoptosis, DNA repair, and signal transduction. In turn, among glioblastoma multiforme (GBM), 3 subgroups of tumors were identified according to their GEP, which were closely associated with the cytogenetic profile of their ancestral tumor cell clones: (i) EGFR amplification, (ii) isolated trisomy 7, and (iii) more complex karyotypes. In summary, our results show a clear association between the GEP of gliomas and tumor histopathology; additionally, among grade IV astrocytoma, GEP are significantly associated with the cytogenetic profile of the ancestral tumor cell clone. Further studies in larger series of patients are necessary to confirm our observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.