Selective autophagy can be mediated via receptor molecules that link specific cargoes to the autophagosomal membranes decorated by ubiquitin-like microtubule-associated protein light chain 3 (LC3) modifiers. Although several autophagy receptors have been identified, little is known about mechanisms controlling their functions in vivo. In this work, we found that phosphorylation of an autophagy receptor, optineurin, promoted selective autophagy of ubiquitincoated cytosolic Salmonella enterica. The protein kinase TANK binding kinase 1 (TBK1) phosphorylated optineurin on serine-177, enhancing LC3 binding affinity and autophagic clearance of cytosolic Salmonella. Conversely, ubiquitin-or LC3-binding optineurin mutants and silencing of optineurin or TBK1 impaired Salmonella autophagy, resulting in increased intracellular bacterial proliferation. We propose that phosphorylation of autophagy receptors might be a general mechanism for regulation of cargo-selective autophagy.Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved catabolic process by which cells deliver bulk cytosolic components for degradation to the lysosome (1-4). Selectivity in cargo targeting is mediated via autophagy receptors that simultaneously bind cargoes and autophagy modifiers, autophagy-related protein 8 (ATG8)/ microtubule-associated protein light chain 3 (LC3)/γ-aminobutyric acid receptor-associated protein (GABARAP) proteins, which are conjugated to the autophagosomal membranes (5, 6). The regulatory mechanisms controlling the spatiotemporal dynamics of the autophagy receptor-target interaction in cells remain unclear (7). Multiple autophagy receptors have been identified with the yeast two-hybrid system (8, 9), which included an N-terminal fragment of optineurin (OPTN), a ubiquitin-binding protein also known as NF-κB essential modulator-related protein ( Fig. 1, A and B). The specific interactions between OPTN and LC3/GABARAP proteins were verified by pull-down assays in mammalian cells, directed yeast two-hybrid transformations, and in vitro using purified proteins ( Fig. 1C and fig. S1, A and B) (10). OPTN bound to ubiquitin chains and autophagy modifiers ATG8/LC3/GABARAP proteins but not to mono-ubiquitin or other ubiquitin-like proteins ( Fig. 1C and fig. S1C). Deletion mapping of the N-terminal region of OPTN identified an LC3 interacting motif (LIR), a linear tetrapeptide sequence present in known autophagy receptors that binds directly to LC3/GABARAP modifiers (9, 11, 12). The LIR was located between the coiled-coil domains of OPTN encompassing amino acids 169 to 209 (Fig. 1A) and was essential for in vitro and in vivo binding between OPTN and LC3/ GABARAP (Fig. 1, B and C, and figs. S1A and S2A). Single point mutations at either OPTN Phe 178 →Ala 178 (F178A) or I181A (13), corresponding to the WxxL of p62, were sufficient to abrogate the interaction with LC3/GABARAP proteins, whereas these mutants were still able to bind to linear ubiquitin chains fused to glutathione S-transferase (GST-4xUb) (...
OBJECTIVES: The liver contains large amounts of microRNA-122 (miR-122), whereas other tissues contain only marginal amounts of this miRNA. MicroRNAs have also been found to circulate in the blood in a cell free form; their potential as readily accessible disease markers is currently evaluated. Here we investigated if the serum levels of miR-122 might be useful as disease parameter in patients with chronic hepatitis C virus (HCV) infection.METHODS: RNA was extracted from sera of patients with chronic HCV infection and healthy controls and was analyzed for miR-122 content by quantitative real-time reversetranscription PCR and for standard parameters of liver function. Liver biopsies from the same patients were examined for the histologic activity index (HAI) and the degree of fibrosis.RESULTS: Sera from patients with chronic HCV infection contained higher levels of miR-122 than sera from healthy controls. Serum miR-122 levels correlated well with markers of liver inflammatory activity, i. e. serum levels of alanine leucine transaminase (ALT) and aspartate transaminase, and the HAI score. In patients with persistently normal ALT levels, serum miR-122 levels did not differ from healthy controls. There was no correlation of serum miR-122 levels with serum albumin, international normalized ratio, liver fibrosis or serum HCV RNA.CONCLUSIONS: The serum level of miR-122 strongly correlates with serum ALT activity and with necroinflammatory activity in patients with chronic HCV infection and elevated ALT levels, but not with fibrosis stage and functional capacity of the liver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.