Because uranium is a natural element present in the earth’s crust, the population may be chronically exposed to low doses of it through drinking water. Additionally, the military and civil uses of uranium can also lead to environmental dispersion that can result in high or low doses of acute or chronic exposure. Recent experimental data suggest this might lead to relatively innocuous biological reactions. The aim of this study was to assess the biological changes in rats caused by ingestion of natural uranium in drinking water with a mean daily intake of 2.7 mg/kg for 9 months and to identify potential biomarkers related to such a contamination. Subsequently, we observed no pathology and standard clinical tests were unable to distinguish between treated and untreated animals. Conversely, LC–MS metabolomics identified urine as an appropriate biofluid for discriminating the experimental groups. Of the 1,376 features detected in urine, the most discriminant were metabolites involved in tryptophan, nicotinate, and nicotinamide metabolic pathways. In particular, N-methylnicotinamide, which was found at a level seven times higher in untreated than in contaminated rats, had the greatest discriminating power. These novel results establish a proof of principle for using metabolomics to address chronic low-dose uranium contamination. They open interesting perspectives for understanding the underlying biological mechanisms and designing a diagnostic test of exposure.Electronic supplementary materialThe online version of this article (doi:10.1007/s11306-013-0544-7) contains supplementary material, which is available to authorized users.
Data describing the biokinetics of radionuclides after contamination come mainly from experimental acute exposures of laboratory animals and follow-up of incidental exposures of humans. These data were compiled to form reference models that could be used for dose calculation in humans. In case of protracted exposure, the same models are applied, assuming that they are not modified by the duration of exposure. This work aims at testing this hypothesis. It presents new experimental data on retention of uranium after chronic intake, which are compared to values calculated from a biokinetic model that is based on experiments of acute exposure of rats to uranium. Experiments were performed with 56 male Sprague Dawley rats, from which 35 were exposed during their whole adult life to 40 mg L of uranyl nitrate dissolved in mineral water and 21 were kept as controls. Animals were euthanatized at 32, 95, 186, 312, 368, and 570 d after the beginning of contamination. Urine and all tissues were removed, weighted, mineralized, and then analyzed for uranium content by Kinetics Phosphorescence Analysis (KPA) or by ICP-MS. Experimental data showed that uranium accumulated in most organs, following a nonmonotonous pattern. Peaks of activities were observed at 1-3, 10, and 19 mo after the beginning of exposure. Additionally, accumulation was shown to occur in tissues such as teeth and brain that are not usually described as target organs. Comparison with model prediction showed that the accumulation of uranium in target organs after chronic exposure is overestimated by the use of a model designed for acute exposure. These differences indicate that protracted exposure to uranium may induce changes in biokinetic parameters when compared to acute contamination and that calculation of dose resulting from chronic intake of radionuclides may need specific models that are not currently available.
Although the nephrotoxicity of uranium has been established through numerous animal studies, relatively little is known about the effects of long-term environmental uranium exposure. Using a combination of conventional biochemical studies and serial analysis of gene expression (SAGE), we examined the renal responses to uranyl nitrate (UN) chronic exposure. Renal uranium levels were significantly increased 4 months after ingestion of uranium in drinking water. Creatinine levels in serum were slightly but significantly increased compared with those in controls. Although no further significant differences in other parameters were noted, substantial molecular changes were observed in toxicogenomic profiles. UN induced dramatic alterations in expression levels of more than 200 genes, mainly up-regulated, including oxidative-response-related genes, genes encoding for cellular metabolism, ribosomal proteins, signal transduction, and solute transporters. Seven differentially expressed transcripts were confirmed by real-time quantitative polymerase chain reaction. In addition, significantly increased peroxide levels support the implication of oxidative stress in UN toxicant response. This report highlights the potential of SAGE for the discovery of novel toxicant-induced gene expression alterations. Here, we present, for the first time, a comprehensive view of renal molecular events after uranium long-term exposure.
IntroductionData are sparse about the potential health risks of chronic low-dose contamination of humans by uranium (natural or anthropogenic) in drinking water. Previous studies report some molecular imbalances but no clinical signs due to uranium intake.ObjectivesIn a proof-of-principle study, we reported that metabolomics is an appropriate method for addressing this chronic low-dose exposure in a rat model (uranium dose: 40 mg L−1; duration: 9 months, n = 10). In the present study, our aim was to investigate the dose–effect pattern and identify additional potential biomarkers in urine samples.MethodsCompared to our previous protocol, we doubled the number of rats per group (n = 20), added additional sampling time points (3 and 6 months) and included several lower doses of natural uranium (doses used: 40, 1.5, 0.15 and 0.015 mg L−1). LC–MS metabolomics was performed on urine samples and statistical analyses were made with SIMCA-P+ and R packages.ResultsThe data confirmed our previous results and showed that discrimination was both dose and time related. Uranium exposure was revealed in rats contaminated for 9 months at a dose as low as 0.15 mg L−1. Eleven features, including the confidently identified N1-methylnicotinamide, N1-methyl-2-pyridone-5-carboxamide and 4-hydroxyphenylacetylglycine, discriminated control from contaminated rats with a specificity and a sensitivity ranging from 83 to 96 %, when combined into a composite score.ConclusionThese findings show promise for the elucidation of underlying radiotoxicologic mechanisms and the design of a diagnostic test to assess exposure in urine, in a dose range experimentally estimated to be above a threshold between 0.015 and 0.15 mg L−1.Electronic supplementary materialThe online version of this article (doi:10.1007/s11306-016-1092-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.