Hypoxic tumours are a major problem for cancer photodynamic therapy. Here, we show that photoredox catalysis can provide an oxygen-independent mechanism of action to combat this problem. We have designed a highly oxidative Ir(III) photocatalyst, [Ir(ttpy)(pq)CI]PF6 ([1]PF6, where 'ttpy' represents 4'-(p-tolyl)-2,2':6',2 "-terpyridine and 'pq' represents 3-phenylisoquinoline), which is phototoxic towards both normoxic and hypoxic cancer cells. Complex 1 photocatalytically oxidizes 1,4-dihydronicotinamide adenine dinucleotide (NADH)-an important coenzyme in living cells-generating NAD center dot radicals with a high turnover frequency in biological media. Moreover, complex 1 and NADH synergistically photoreduce cytochrome c under hypoxia. Density functional theory calculations reveal pi stacking in adducts of complex 1 and NADH, facilitating photoinduced single-electron transfer. In cancer cells, complex 1 localizes in mitochondria and disrupts electron transport via NADH photocatalysis. On light irradiation, complex 1 induces NADH depletion, intracellular redox imbalance and immunogenic apoptotic cancer cell death. This photocatalytic redox imbalance strategy offers a new approach for efficient cancer phototherapy.
The use of photodynamic therapy (PDT) against cancer has received increasing attention over recent years. However, the application of the currently approved photosensitizers (PSs) is limited by their poor aqueous solubility, aggregation, photobleaching and slow clearance from the body. To overcome these limitations, there is a need for the development of new classes of PSs with ruthenium(II) polypyridine complexes currently gaining momentum. However, these compounds generally lack significant absorption in the biological spectral window, limiting their application to treat deep-seated or large tumors. To overcome this drawback, ruthenium(II) polypyridine complexes designed in silico with (E,E′)-4,4′-bisstyryl-2,2′-bipyridine ligands show impressive 1-and 2-Photon absorption up to a magnitude higher than the ones published so far. While nontoxic in the dark, these compounds are phototoxic in various 2D monolayer cells, 3D multicellular tumor spheroids and are able to eradicate a multiresistant tumor inside a mouse model upon clinically relevant 1-Photon and 2-Photon excitation.
Two Ru(II) polypyridyl complexes, Ru(DIP)2(bdt) (1) and [Ru(dqpCO2Me)(ptpy)](2+) (2) (DIP = 4,7-diphenyl-1,10-phenanthroline, bdt = 1,2-benzenedithiolate, dqpCO2Me = 4-methylcarboxy-2,6-di(quinolin-8-yl)pyridine), ptpy = 4'-phenyl-2,2':6',2 -terpyridine) have been investigated as photosensitizers (PSs) for photodynamic therapy (PDT). In our experimental settings, the phototoxicity and phototoxic index (PI) of 2 (IC50(light): 25.3 M, 420 nm, 6.95 J/cm(2); PI >4) and particularly of 1 (IC50(light): 0.62 M, 420 nm, 6.95 J/cm(2); PI: 80) are considerably superior compared to the two clinically approved PSs porfimer sodium and 5-aminolevulinic acid. Cellular uptake and distribution of these complexes was investigated by confocal microscopy (1) and by inductively coupled plasma mass spectrometry (1 and 2). Their phototoxicity was also determined against the Gram-(+) Staphylococcus aureus and Gram-(-) Escherichia coli for potential antimicrobial PDT (aPDT) applications. Both complexes showed significant aPDT activity (420 nm, 8 J/cm(2)) against Gram-(+) (S. aureus; >6 log10 CFU reduction) and, for 2, also against Gram-(-) E. coli (>4 log10 CFU reduction). Two Ru(II) polypyridyl complexes, Ru(DIP)2(bdt) (1) and [Ru(dqpCO2Me)(ptpy)] 2+ (2) (DIP = 4,7-diphenyl-1,10-phenanthroline; bdt = 1,2-benzenedithiolate; dqpCO2Me = 4-methylcarboxy-2,6-di(quinolin-8-yl)pyridine); ptpy = 4'-phenyl-2,2':6',2''-terpyridine) have been investigated as photosensitizers (PSs) for photodynamic therapy (PDT). In our experimental settings, the phototoxicity and photo-index (PI) of 2 (IC50(light): 25.3 μM, 420 nm, 6.95 J/cm 2 ; PI: >4) and particularly of 1 (IC50(light): 0.62 μM, 420 nm, 6.95 J/cm 2 ; PI: 80) are considerably superior compared to the two clinically approved PSs porfimer sodium and 5-aminolevulinic. Cellular uptake and distribution of these complexes was investigated by confocal microscopy (1) and by inductively coupled plasma-mass spectrometry (1 and 2). Their phototoxicity was also determined against the Gram-(+) S. aureus and Gram-(−) E. coli for potential antimicrobial PDT (aPDT) applications. Both complexes showed significant aPDT activity (420 nm, 8 J/cm 2 ) against Gram-(+) (S. aureus; >6 log10 CFU reduction) and, for 2, also against Gram-(−) E. coli (>4 log10 CFU reduction). 3Introduction.
(89)Zr-based imaging agents hold great promise as novel radio-tracers in nuclear medicine. However, insufficient stability of currently used radiometal complexes in vivo is a safety concern for clinical applications. We herein report the first octadentate bifunctional chelating agent for the development of (89)Zr-labelled (bio)conjugates with improved stability.
The utilization of photodynamic therapy (PDT) for the treatment of various types of cancer has gained increasing attention over the last decades. Despite the clinical success of approved photosensitizers (PSs), their application is sometimes limited due to poor water solubility, aggregation, photodegradation, and slow clearance from the body. To overcome these drawbacks, research efforts are devoted toward the development of metal complexes and especially Ru(II) polypyridine complexes based on their attractive photophysical and biological properties. Despite the recent research developments, the vast majority of complexes utilize blue or UV-A light to obtain a PDT effect, limiting the penetration depth inside tissues and, therefore, the possibility to treat deep-seated or large tumors. To circumvent these drawbacks, we present the first example of a DFT guided search for efficient PDT PSs with a substantial spectral red shift toward the biological spectral window. Thanks to this design, we have unveiled a Ru(II) polypyridine complex that causes phototoxicity in the very low micromolar to nanomolar range at clinically relevant 595 nm, in monolayer cells as well as in 3D multicellular tumor spheroids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.