Sox7 and Sox18 are members of the F-subgroup of Sox transcription factors family and are mostly expressed in endothelial compartments. In humans, dominant mutations in Sox18 are the underlying cause of the severe hypotrichosis-lymphedema-telangiectasia disorder characterized by vascular defects. However little is known about which vasculogenic processes Sox7 and Sox18 regulate in vivo. We cloned the orthologs of Sox7 and Sox18 in zebrafish, analysed their expression pattern and performed functional analyses. Both genes are expressed in the lateral plate mesoderm during somitogenesis. At later stages, Sox18 is expressed in all axial vessels whereas Sox7 expression is mainly restricted to the dorsal aorta. Knockdown of Sox7 or Sox18 alone failed to reveal any phenotype. In contrast, blocking the two genes simultaneously led to embryos displaying dysmorphogenesis of the proximal aorta and arteriovenous shunts, all of which can account for the lack of circulation observed in the trunk and tail. Gene expression analyses performed with general endothelial markers on double morphants revealed that Sox7 and Sox18 are dispensable for the initial specification and positioning of the major trunk vessels. However, morphants display ectopic expression of the venous Flt4 marker in the dorsal aorta and a concomitant reduction of the artery-specific markers EphrinB2a and Gridlock. The striking similarities between the phenotype of Sox7/Sox18 morphants and Gridlock mutants strongly suggest that Sox7 and Sox18 control arterial-venous identity by regulating Gridlock expression.
The interaction between tumor cells and their microenvironment is an essential aspect of tumor development. Therefore, understanding how this microenvironment communicates with tumor cells is crucial for the development of new anti-cancer therapies. MicroRNAs (miRNAs) are small non-coding RNAs that inhibit gene expression. They are secreted into the extracellular medium in vesicles called exosomes, which allow communication between cells via the transfer of their cargo. Consequently, we hypothesized that circulating endothelial miRNAs could be transferred to tumor cells and modify their phenotype. Using exogenous miRNA, we demonstrated that endothelial cells can transfer miRNA to tumor cells via exosomes. Using miRNA profiling, we identified miR-503, which exhibited downregulated levels in exosomes released from endothelial cells cultured under tumoral conditions. The modulation of miR-503 in breast cancer cells altered their proliferative and invasive capacities. We then identified two targets of miR-503, CCND2 and CCND3. Moreover, we measured increased plasmatic miR-503 in breast cancer patients after neoadjuvant chemotherapy, which could be partly due to increased miRNA secretion by endothelial cells. Taken together, our data are the first to reveal the involvement of the endothelium in the modulation of tumor development via the secretion of circulating miR-503 in response to chemotherapy treatment.
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing interstitial lung disease of unknown aetiology which leads rapidly to death. As diagnosis of IPF is complex, we aimed to characterise microRNA (miRNA) content of exosomes from sputum of patients with IPF. Using miRNA quantitative PCR array, we found a substantial dysregulation of sputum exosomal miRNA levels between patients with IPF and healthy subjects and identified a unique signature of three miRNAs. Interestingly, we found a negative correlation between miR-142-3p and diffusing capacity of the lungs for carbon monoxide/alveolar volume. This is the first characterisation of miRNA content of sputum-derived exosomes in IPF that identified promising biomarkers for diagnosis and disease severity.
IntroductionIdiopathic pulmonary fibrosis (IPF) is a progressive fibrosing interstitial lung disease of unknown aetiology and cure. Recent studies have reported a dysregulation of exosomal microRNAs (miRs) in the IPF context. However, the impact of IPF-related exosomal miRs on the progression of pulmonary fibrosis is unknown.MethodsTwo independent cohorts were enrolled at the ambulatory care polyclinic of Liège University. Exosomes from sputum were obtained from 19 patients with IPF and 23 healthy subjects (HSs) (cohort 1), and the ones from plasma derived from 14 patients with IPF and 14 HSs (cohort 2). Exosomal miR expression was performed by quantitative reverse transcription–PCR. The functional role of exosomal miRs was assessed in vitro by transfecting miR mimics in human alveolar epithelial cells and lung fibroblasts.ResultsExosomal miR analysis showed that miR-142-3p was significantly upregulated in sputum and plasma of patients with IPF (8.06-fold, p<0.0001; 1.64 fold, p=0.008, respectively). Correlation analysis revealed a positive association between exosomal miR-142-3p and the percentage of macrophages from sputum of patients with IPF (r=0.576, p=0.012), suggesting macrophage origin of exosomal miR-142-3p upregulation. The overexpression of miR-142-3p in alveolar epithelial cells and lung fibroblasts was able to reduce the expression of transforming growth factor β receptor 1 (TGFβ-R1) and profibrotic genes. Furthermore, exosomes isolated from macrophages present antifibrotic properties due in part to the repression of TGFβ-R1 by miR-142-3p transfer in target cells.DiscussionOur results suggest that macrophage-derived exosomes may fight against pulmonary fibrosis progression via the delivery of antifibrotic miR-142–3 p to alveolar epithelial cells and lung fibroblasts.
The N-terminal fragment of prolactin (16K PRL) inhibits tumor growth by impairing angiogenesis, but the underlying mechanisms are unknown. Here, we found that 16K PRL binds the fibrinolytic inhibitor plasminogen activator inhibitor-1 (PAI-1), which is known to contextually promote tumor angiogenesis and growth. Loss of PAI-1 abrogated the antitumoral and antiangiogenic effects of 16K PRL. PAI-1 bound the ternary complex PAI-1-urokinase-type plasminogen activator (uPA)-uPA receptor (uPAR), thereby exerting antiangiogenic effects. By inhibiting the antifibrinolytic activity of PAI-1, 16K PRL also protected mice against thromboembolism and promoted arterial clot lysis. Thus, by signaling through the PAI-1-uPA-uPAR complex, 16K PRL impairs tumor vascularization and growth and, by inhibiting the antifibrinolytic activity of PAI-1, promotes thrombolysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.