The aim of this study is based on natural clay as an adsorbent in the elimination of polyphenols from olive mill wastewater (OMW). This clay was analyzed using XRD, SEM/EDX, FTIR, surface area measurement (BET method), thermal analysis (TGA/DTA), and X-ray fluorescence (XRF) and then used in adsorption experiments. The results reveal that the best quantity of adsorption of polyphenols is 161 mg/g at the temperature of 25°C, but they decrease at 35°C and 45°C. A great agreement with pseudo-second-order and Freundlich model is represented by kinetic and isotherms models, and several parameters such as ΔG0, ΔS0, and ΔH0 were determined using the thermodynamic function relationship.
<p>The fundamental character of the Mg-Al mixed oxide (Mg<sub>n</sub>(Al)O), derived from the Mg-Al hydrotalcite (Mg<sub>n</sub>Al-CO<sub>3</sub>-HT), where n corresponds to the Mg/Al molar ratio (n: 2, 2.5, 3, 3.5 and 4), was studied by using the adsorption of phenol as a probe acid molecule. The hydrotalcite precursors were prepared by the coprecipitation method. Their derived mixed oxides were obtained by thermal treatment at 450°C in a flow of air. The resulting solids were characterized by X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), infrared spectroscopy (FTIR), thermogravimetric and differential thermal analysis (TG-DTA), nitrogen physisorption (BET) and phenol chemisorption. The phenol adsorption followed by UV-Visible spectrophotometry shows that the basicity increases with the Mg/Al molar ratio, such that maximum quantity of phenol adsorbed (Q<sub>ads</sub> = 0.54 mmol/g <sub>cat</sub>) was obtained with the mixed oxide derived from the Mg-Al hydrotalcite of Mg/Al molar ratio equal to 3.5.</p>
e present work aims to study the affinity of a component of the thyme essential oil "thymol" to natural Moroccan clay "Rhassoul" using the adsorption technique. e physicochemical characterizations of the purified and modified clay were carried out by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), DTA/TGA, and SEM-EDX. ymol adsorption tests on the purified Rhassoul (Rh-P) and the modified one by CTAB (Rh-CTAB) were followed by UV-visible spectroscopy. ey show that the adsorption isotherms can be described by the Freundlich model and that the kinetics of adsorption is in accordance with the pseudo-second-order model for the two clays. Adsorption capacities obtained were of the order of 6 mg/g for the purified Rhassoul and 16 mg/g for the modified Rhassoul by cetyltrimethylammonium bromide (CTAB). ese values show that the modified Rhassoul has a better adsorption capacity compared to the purified Rhassoul.
Natural polyphenols contained in olive mill wastewaters (OMW) have been usually associated with great bioactive properties as “antioxidants”. In this work, we recovered the polyphenols after adsorption onto natural clay “ghassoul” by different solvents: water, ethyl acetate, and methanol (PPW, PPA, and PPM, respectively) to avoid environmental pollution. Also, we tested the antioxidant activity of the extracted polyphenols by two methods: 1,1-diphenyl-2-picrylhydrazyl (DPPH) and total antioxidant capacity (TAC). Then, we analyzed antimicrobial activity by the microdilution technique to determine at the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). The OMW of the Fez-Meknes region has a very acidic pH, considerable amounts of mineral matter, and a high concentration of polyphenols and organic content. The results of the test from DPPH showed good antiradical potential for polyphenols extracted with water, but the TAC showed an important capacity for all extracts unless PPA. The antibacterial activity is not the same on the four bacteria studied (Escherichia coli, Salmonella sp, Staphylococcus aureus, and Enterococcus faecalis), and all extracts inhibit most tested germs that do not have the same MIC and the same sensitivity. Only the PPW showed the minimum bactericidal concentration (MBC) that is equal to 0.290 mg/mL for Salmonella sp and Staphylococcus aureus, which confirms that the extraction by water of the adsorbed polyphenols is an original solution to recover the polyphenols and also to obtain a natural phenolic antioxidant which can be used in the pharmaceutical, nourishment, and cosmetic industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.