It is well known that exposure to microgravity in astronauts leads to a plethora physiological responses such as headward fluid shift, body unloading, and cardiovascular deconditioning. When astronauts return to Earth, some encounter problems related to orthostatic intolerance. An impaired cerebral autoregulation (CA), which could be compromised by the effects of microgravity, has been proposed as one of the mechanisms responsible for orthostatic intolerance. CA is a homeostatic mechanism that maintains cerebral blood flow for any variations in cerebral perfusion pressure by adapting the vascular tone and cerebral vessel diameter. The groundbased models of microgravity are useful tools for determining the gravitational impact of spaceflight on human body. The head-down tilt bed rest (HDTBR), where the subject remains in supine position at −6 degrees for periods ranging from few days to several weeks is the most commonly used ground-based model of microgravity for cardiovascular deconditioning. head-down bed rest (HDBR) is able to replicate cephalic fluid shift, immobilization, confinement, and inactivity. Dry immersion (DI) model is another approach where the subject remains immersed in thermoneutral water covered with an elastic waterproof fabric separating the subject from the water. Regarding DI, this analog imitates absence of any supporting structure for the body, centralization of body fluids, immobilization and hypokinesia observed during spaceflight. However, little is known about the impact of microgravity on CA. Here, we review the fundamental principles and the different mechanisms involved in CA. We also consider the different approaches in order to assess CA. Finally, we focus on the effects of short-and long-term spaceflight on CA and compare these findings with two specific analogs to microgravity: HDBR and DI.
Neuro-ophthalmological changes named spaceflight associated neuro-ocular syndrome (SANS) reported after spaceflights are important medical issues. Dry immersion (DI), an analog to microgravity, rapidly induces a centralization of body fluids, immobilization, and hypokinesia similar to that observed during spaceflight. The main objectives of the present study were 2-fold: (1) to assess the neuro-ophthalmological impact during 5 days of DI and (2) to determine the effects of venoconstrictive thigh cuffs (VTC), used as a countermeasure to limit headward fluid shift, on DI-induced ophthalmological adaptations. Eighteen healthy male subjects underwent 5 days of DI with or without VTC countermeasures. The subjects were randomly assigned into two groups of 9: a control and cuffs group. Retinal and optic nerve thickness were assessed with spectral-domain optical coherence tomography (OCT). Optic nerve sheath diameter (ONSD) was measured by ocular ultrasonography and used to assess indirect changes in intracranial pressure (ICP). Intraocular pressure (IOP) was assessed by applanation tonometry. A higher thickness of the retinal nerve fiber layer (RNFL) in the temporal quadrant was observed after DI. ONSD increased significantly during DI and remained higher during the recovery phase. IOP did not significantly change during and after DI. VTC tended to limit the ONSD enlargement but not the higher thickness of an RNFL induced by DI. These findings suggest that 5 days of DI induced significant ophthalmological changes. VTC were found to dampen the ONSD enlargement induced by DI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.