AimThe aim of the current study is to assess the mortality prediction accuracy of circulating cell-free DNA (CFD) level at admission measured by a new simplified method.Materials and MethodsCFD levels were measured by a direct fluorescence assay in severe sepsis patients on intensive care unit (ICU) admission. In-hospital and/or twenty eight day all-cause mortality was the primary outcome.ResultsOut of 108 patients with median APACHE II of 20, 32.4% have died in hospital/or at 28-day. CFD levels were higher in decedents: median 3469.0 vs. 1659 ng/ml, p<0.001. In multivariable model APACHE II score and CFD (quartiles) were significantly associated with the mortality: odds ratio of 1.05, p = 0.049 and 2.57, p<0.001 per quartile respectively. C-statistics for the models was 0.79 for CFD and 0.68 for APACHE II. Integrated discrimination improvement (IDI) analyses showed that CFD and CFD+APACHE II score models had better discriminatory ability than APACHE II score alone.ConclusionsCFD level assessed by a new, simple fluorometric-assay is an accurate predictor of acute mortality among ICU patients with severe sepsis. Comparison of CFD to APACHE II score and Procalcitonin (PCT), suggests that CFD has the potential to improve clinical decision making.
BackgroundPoint-of-care ultrasonography (PoCUS) is a rapidly evolving discipline that aims to train non-cardiologists, non-radiologists clinicians in performing bedside ultrasound to guide clinical decision. Training of PoCUS is challenging, time-consuming and requires large amount of resources. The objective of our study was to evaluate if this training process can be simplified by allowing medical students self-train themselves with a web-based cardiac ultrasound software.MethodsA prospective, single blinded, cohort study, comparing performance of 29 medical students in performing a six-minutes cardiac ultrasound exam. Students were divided into two groups: self-learning group, using a combination of E-learning software and self-practice using pocket ultrasound device compared to formal, frontal cardiac ultrasound course.ResultsAll 29 students completed their designated courses and performed the six-minutes exam: 20 students participated in the frontal cardiac ultrasound course and 9 completed the self-learning course. The median (Q1,Q3) test score for the self-learning group was higher than the frontal course group score, 18 (15,19) versus 15 (12,19.5), respectively. Nevertheless, no statistically significant difference was found between the two study groups (p = 0.478). All students in the self-learning course group (9/9, 100%) and 16 (16/20, 80%) of students in the frontal ultrasound course group obtained correct alignment of the parasternal long axis view (p = 0.280).ConclusionsSelf-learning students combining E-learning software with self-practice cardiac ultrasound were as good as students who received a validated, bedside, frontal cardiac ultrasound course. Our findings suggest that independent cardiac ultrasound learning, combining utilization of E–learning software and self-practice, is feasible. Self-E- learning of cardiac ultrasound may serve as an important, cost-effective adjunct to heavily resource consuming traditional teaching.
BackgroundTeaching cardiac ultrasound to medical students in a brief course is a challenge. We aimed to evaluate the feasibility of teaching large groups of medical students the acquisition and interpretation of cardiac ultrasound images using a pocket ultrasound device (PUD) in a short, specially designed course.MethodsThirty-one medical students in their first clinical year participated in the study. All were novices in the use of cardiac ultrasound. The training consisted of 4 hours of frontal lectures and 4 hours of hands-on training. Students were encouraged to use PUD for individual practice. Finally, the students’ proficiency in the acquisition of ultrasound images and their ability to recognize normal and pathological states were evaluated.ResultsSixteen of 27 (59%) students were able to demonstrate all main ultrasound views (parasternal, apical, and subcostal views) in a six-minute test. The most obtainable view was the parasternal long-axis view (89%) and the least obtainable was the subcostal view (58%). Ninety-seven percent of students correctly differentiated normal from severely reduced left ventricular function, 100% correctly differentiated a normal right ventricle from a severely hypokinetic one, 100% correctly differentiated a normal mitral valve from a rheumatic one, and 88% correctly differentiated a normal aortic valve from a calcified one, while 95% of them correctly identified the presence of pericardial effusion.ConclusionsTraining of medical students in cardiac ultrasound during the first clinical year using a short, focused course is feasible and enables students with modest ability to acquire the main transthoracic ultrasound views and gain proficiency in the diagnosis of a limited number of cardiac pathologies.Electronic supplementary materialThe online version of this article (doi:10.1186/s12909-017-0928-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.