Autoimmune disorders are characterized by tissue damage, caused by self-reactivity of different effectors mechanisms of the immune system, namely antibodies and T cells. Their occurrence may be associated with genetic and/or environmental predisposition and to some extent, have implications for fertility and obstetrics. The relationship between autoimmunity and reproduction is bidirectional. This review only addresses the impact of pregnancy on autoimmune diseases and not the influence of autoimmunity on pregnancy development. Th17/Th1-type cells are aggressive and pathogenic in many autoimmune disorders and inflammatory diseases. The immunology of pregnancy underlies the role of Th2-type cytokines to maintain the tolerance of the mother towards the fetal semi-allograft. Non-specific factors, including hormonal changes, favor a switch to Th2-type cytokine profile. In pregnancy Th2, Th17/Th2 and Treg cells accumulate in the decidua but may also be present in the mother’s circulation and can regulate autoimmune responses influencing the progression of autoimmune diseases.
Our data suggest that Th17, Th0, and Th2 cells, respectively, may have a role in the pathogenesis of erosive and reticular oral lichen planus.
Trophoblast HLA-C antigens from paternal origins, which liken the trophoblast to a semiallograft, could be presented by the maternal APCs to the specific maternal CD4+ T helper cells, which could release various cytokines in response to these alloantigens. On the basis of the cytokines produced, these cells can be classified in Th1, Th2 and Th17 cells. Th1 and Th17 cells, known to be responsible for acute allograft rejection, could be involved in miscarriage and Th2 cells together with regulatory CD4+ T cells, known to be involved in allograft tolerance, could be responsible, at least in part, for the success of pregnancy. In this review we focus the role effector CD4+ T cells Th1, Th2 and Th17 cells on the fetal allograft tolerance.
Successful pregnancy in humans has been associated with production of IL-4 by T cells at the feto–maternal interface. Soluble HLA-G5 produced by trophoblasts potentially controls the decidual T cell cytokine profile. We studied the effect of HLA-G5 on the cytokine profile of purified human macrophages and Ag-specific T cells in vitro. We demonstrated that HLA-G5 increased production of IL-12 by purified peripheral blood macrophages. Although IL-12 production by macrophages is known to induce IFN-γ production by CD4+ T cells, HLA-G5 increased production of IL-4 but not IFN-γ by CD4+ T cells after Ag presentation by macrophages. We found that this apparent paradox was due to the differential expression of the ILT2 HLA-G5 receptor on activated T cells and macrophages. This receptor was upregulated in the former and downregulated in the latter after Ag presentation and activation of both cell types. This observation was confirmed in situ, where decidual macrophages and T cells are continuously exposed to HLA-G5 produced locally and activated by trophoblast alloantigens. Freshly isolated decidua basalis macrophages expressed lower levels of ILT2 than peripheral blood macrophages from the same pregnant women. They did not spontaneously produce IL-12, whereas freshly isolated decidual CD4+ T cells expressed high levels of activation markers (CD25, HLA-DR, and CD69) as well as ILT2 and spontaneously produced IL-4 but not IFN-γ. Therefore, HLA-G5 could be responsible, at least in part, via its interaction with ILT2, for decidual T cell IL-4 production, known to be crucial for successful pregnancy.
BackgroundTrophoblast expressing paternal HLA-C antigens resemble a semiallograft, and could be rejected by maternal CD4+ T lymphocytes. We examined the possible role in human pregnancy of Th17 cells, known to be involved in allograft rejection and reported for this reason to be responsible for miscarriages. We also studied Th17/Th1 and Th17/Th2 cells never investigated before. We defined for the first time the role of different Th17 subpopulations at the embryo implantation site and the role of HLA-G5, produced by the trophoblast/embryo, on Th17 cell differentiation.MethodsCytokine production by CD4+ purified T cell and T clones from decidua of normal pregnancy, unexplained recurrent abortion, and ectopic pregnancy at both embryo implantation site and distant from that site were analyzed for protein and mRNA production. Antigen-specific T cell lines were derived in the presence and in the absence of HLA-G5.ResultsWe found an associated spontaneous production of IL-17A, IL-17F and IL-4 along with expression of CD161, CCR8 and CCR4 (Th2- and Th17-type markers) in fresh decidua CD4+ T cells during successful pregnancy. There was a prevalence of Th17/Th2 cells (producing IL-17A, IL-17F, IL-22 and IL-4) in the decidua of successful pregnancy, but the exclusive presence of Th17 (producing IL-17A, IL-17F, IL-22) and Th17/Th1 (producing IL-17A, IL-17F, IL-22 and IFN-γ) cells was found in the decidua of unexplained recurrent abortion. More importantly, we observed that Th17/Th2 cells were exclusively present at the embryo implantation site during tubal ectopic pregnancy, and that IL-4, GATA-3, IL-17A, ROR-C mRNA levels increased in tubal biopsies taken from embryo implantation sites, whereas Th17, Th17/Th1 and Th1 cells are exclusively present apart from implantation sites. Moreover, soluble HLA-G5 mediates the development of Th17/Th2 cells by increasing IL-4, IL-17A and IL-17F protein and mRNA production of CD4+ T helper cells.ConclusionNo pathogenic role of decidual Th17 cells during pregnancy was observed. Indeed, a beneficial role for these cells was observed when they also produced IL-4. HLA-G5 could be the key feature of the uterine microenvironment responsible for the development of Th17/Th2 cells, which seem to be crucial for successful embryo implantation.Electronic supplementary materialThe online version of this article (doi:10.1186/s12948-016-0039-y) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.