COVID-19 pandemic caused by SARS-CoV-2 infection is a public health emergency. COVID-19 typically exhibits respiratory illness. Unexpectedly, emerging clinical reports indicate that neurological symptoms continue to rise, suggesting detrimental effects of SARS-CoV-2 on the central nervous system (CNS). Here, we show that a Düsseldorf isolate of SARS-CoV-2 enters 3D human brain organoids within 2 days of exposure. We identified that SARS-CoV-2 preferably targets neurons of brain organoids. Imaging neurons of organoids reveal that SARS-CoV-2 exposure is associated with altered distribution of Tau from axons to soma, hyperphosphorylation, and apparent neuronal death. Our studies, therefore, provide initial insights into the potential neurotoxic effect of SARS-CoV-2 and emphasize that brain organoids could model CNS pathologies of COVID-19.
Objective: To investigate the presence of viral RNA in human semen of patients with severe acute-respiratory syndrome coronavirus 2 (SARS-CoV-2) and to evaluate its presence and relevance in semen parameters. Design: Pilot cohort study. Setting: University hospital. Patient(s): Thirty-four men were distributed as: 1) patients in convalescence (patients with confirmed SARS-CoV-2 infection in pharyngeal swab according to reverse-transcription polymerase chain reaction [RT-PCR] or antibodies); 2) negative control group (no antibodies); and 3) patients with an acute infection (detection of SARS-CoV-2 in pharyngeal swab). Intervention: Semen and a blood sample were collected from each individual. Main Outcome Measure(s): Analysis of semen quality according to the World Health Organization standards. Detection of SARS-CoV-2 by RT-PCR in the native semen sample and after density gradient preparation. Confirmation of immunoglobulin (Ig) A und IgG antibodies in the blood. Result(s): Eighteen semen samples from recovered men were obtained 8-54 days after absence of symptoms, 14 from control subjects, and 2 from patients with an active COVID-19 infection. No RNA was detected by means of RT-PCR in the semen, including semen samples from two patients with an acute COVID-19 infection. Subjects with a moderate infection showed an impairment of sperm quality. Conclusion(s):A mild COVID-19 infection is not likely to affect testis and epididymis function, whereas semen parameters did seem impaired after a moderate infection. SARS-CoV-2 RNA could not be detected in semen of recovered and acute COVID-19-positive men. This suggests no viral transmission during sexual contact and assisted reproductive techniques, although further data need to be obtained. (Fertil Steril Ò 2020;114:233-8. Ó2020 by American Society for Reproductive Medicine.) El resumen está disponible en Español al final del artículo.
Background The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has led to the development of various vaccines. Real-life data on immune responses elicited in the most vulnerable group of vaccinees older than age 80 years old are still underrepresented despite the prioritization of the elderly in vaccination campaigns. Methods We conducted a cohort study with 2 age groups, young vaccinees below the age of 60 years and elderly vaccinees over the age of 80 years, to compare their antibody responses to the first and second dose of the BNT162b2 coronavirus disease 2019 vaccination. Results Although the majority of participants in both groups produced specific immunoglobulin G antibody titers against SARS-CoV-2 spike protein, titers were significantly lower in elderly participants. Although the increment of antibody levels after the second immunization was higher in elderly participants, the absolute mean titer of this group remained lower than the <60 years of age group. After the second vaccination, 31.3% of the elderly had no detectable neutralizing antibodies in contrast to the younger group, in which only 2.2% had no detectable neutralizing antibodies. Conclusions Our data showed differences between the antibody responses raised after the first and second BNT162b2 vaccination, in particular lower frequencies of neutralizing antibodies in the elderly group. This suggests that this population needs to be closely monitored and may require earlier revaccination and/or an increased vaccine dose to ensure stronger long-lasting immunity and protection against infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.