Aflatoxin B1 (AF) is an unavoidable environmental pollutant that contaminates food, feed, and grains, which seriously threatens human and animal health. Arabic gum (AG) has recently evoked much attention owing to its promising therapeutic potential. Thus, the current study was conducted to look into the possible mechanisms beyond the ameliorative activity of AG against AF-inflicted hepatic injury. Male Wistar rats were assigned into four groups: Control, AG (7.5 g/kg b.w/day, orally), AF (200 µg/kg b.w), and AG plus AF group. AF induced marked liver damage expounded by considerable changes in biochemical profile and histological architecture. The oxidative stress stimulated by AF boosted the production of plasma malondialdehyde (MDA) level along with decreases in the total antioxidant capacity (TAC) level and glutathione peroxidase (GPx) activity. Additionally, AF exposure was associated with down-regulation of the nuclear factor erythroid2–related factor2 (Nrf2) and superoxide dismutase1 (SOD1) protein expression in liver tissue. Apoptotic cascade has also been evoked following AF-exposure, as depicted in overexpression of cytochrome c (Cyto c), cleaved Caspase3 (Cl. Casp3), along with enhanced up-regulation of inflammatory mediators such as tumor necrosis factor-α (TNF-α), interleukin (IL)-6, inducible nitric oxide synthase (iNOS), and nuclear factor kappa-B transcription factor/p65 (NF-κB/p65) mRNA expression levels. Interestingly, the antioxidant and anti-inflammatory contents of AG may reverse the induced oxidative damage, inflammation, and apoptosis in AF-exposed animals.
Background: Hepatic and renal damage is a cisplatin (Cis)-induced deleterious effect that is a major limiting factor in clinical chemotherapy. Objectives: The current study was designed to investigate the influence of pretreatment with olive leaf extract (OLE), bone-marrow-derived mesenchymal stem cells (BM-MSC), and their conditioned media (CM-MSC) against genotoxicity, nephrotoxicity, hepatotoxicity, and immunotoxicity induced by cisplatin in rats. Methods: The rats were randomly divided into six groups (six rats each) as follows: Control; OLE group, treated with OLE; Cis group, treated with a single intraperitoneal dose of Cis (7 mg/kg bw); Cis + OLE group, treated with OLE and cisplatin; Cis + CM-MSC group, treated with BM-MSC conditioned media and Cis; and Cis + MSC group, treated with BM-MSC in addition to Cis. Results: Cis resulted in a significant deterioration in hepatic and renal functions and histological structures. Furthermore, it increased inflammatory markers (TNF-α, IL-6, and IL-1β) and malondialdehyde (MDA) levels and decreased glutathione (GSH) content, total antioxidant capacity (TAC), catalase (CAT), and superoxide dismutase (SOD) activity in hepatic and renal tissues. Furthermore, apoptosis was evident in rat tissues. A significant increase in serum 8-hydroxy-2-deoxyguanosine (8-OH-dG), nitric oxide (NO) and lactate dehydrogenase (LDH), and a decrease in lysozyme activity were detected in Cis-treated rats. OLE, CM-MSC, and BM-MSC have significantly ameliorated Cis-induced deterioration in hepatic and renal structure and function and improved oxidative stress and inflammatory markers, with preference to BM-MSC. Moreover, apoptosis was significantly inhibited, evident from the decreased expression of Bax and caspase-3 genes and upregulation of Bcl-2 proteins in protective groups as compared to Cis group. Conclusions: These findings indicate that BM-MSC, CM-MSC, and OLE have beneficial effects in ameliorating cisplatin-induced oxidative stress, inflammation, and apoptosis in the hepatotoxicity, nephrotoxicity, immunotoxicity, and genotoxicity in a rat model.
The postmortem diagnosis of death by drowning is one of the most difficult issues in forensic pathology. We investigated possible evidence differentiating saltwater drowning from freshwater drowning by histopathological changes in brain, heart, lungs, liver, and kidneys tissues. A cross section descriptive study was carried out on eighteen 12-week-old male Wistar rats; they were divided equally into 3 groups. Group 1: control group; Group 2: death by drowning in freshwater; Group 3: death by drowning in saltwater. Immediately after death, all tested organs were removed and fixed for histopathological examination. The brain of freshwater group depicted degenerated neurocytes with dystrophic changes in the form of shrunken cell, pyknotic nuclei and deeply eosinophilic cytoplasm. The heart showed clear evidence of myocyte injuries in saltwater drowning compared to the control and freshwater groups. The kidneys of rats drown in saltwater revealed more glomerular destruction with no differences in tubulo-interstitial changes in comparison with those drown in freshwater. In the lungs, the changes in freshwater were restricted to the alveoli, and the bronchial changes were more distinctive in saltwater. No disturbed liver architecture was seen in both test groups, however hydropic degeneration, congested vessels, and sinusoids were more distinct in saltwater group. In conclusion, diagnostic differentiation between fresh and saltwater drowning was reliable in rats' lungs and heart with minimal differentiation in liver, kidneys, and brain. Further studies of drowning with different staining techniques will help to clarify the potential role of histopathological changes in body organs as indicator of drowning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.