Flexible porous coordination polymers change their structure in response to molecular incorporation but recover their original configuration after the guest has been removed. We demonstrated that the crystal downsizing of twofold interpenetrated frameworks of [Cu(2)(dicarboxylate)(2)(amine)](n) regulates the structural flexibility and induces a shape-memory effect in the coordination frameworks. In addition to the two structures that contribute to the sorption process (that is, a nonporous closed phase and a guest-included open phase), we isolated an unusual, metastable open dried phase when downsizing the crystals to the mesoscale, and the closed phase was recovered by thermal treatment. Crystal downsizing suppressed the structural mobility and stabilized the open dried phase. The successful isolation of two interconvertible empty phases, the closed phase and the open dried phase, provided switchable sorption properties with or without gate-opening behavior.
Solid-state refrigeration technology based on caloric effects are promising to replace the currently used vapor compression cycles. However, their application is restricted due to limited performances of caloric materials. Here, we have identified colossal barocaloric effects (CBCEs) in a class of disordered solids called plastic crystals. The obtained entropy changes are about 380 J kg -1 K -1 in the representative neopentylglycol around room temperature. Inelastic neutron scattering reveals that the CBCEs in plastic crystals are attributed to the combination of the vast molecular orientational disorder, giant compressibility and high anharmonic lattice dynamics. Our study establishes the microscopic scenario for CBCEs in plastic crystals and paves a new route to the next-generation solid-state refrigeration technology.
The compositional space of high-entropy-alloy nanoparticles (HEA NPs) significantly expands the diversity of the materials library. Every atom in HEA NPs has a different elemental coordination environment, which requires knowledge of the local electronic structure at an atomic level. However, such structure has not been disclosed experimentally or theoretically. We synthesized HEA NPs composed of all eight noble-metal-group elements (NM-HEA) for the first time. Their electronic structure was revealed by hard X-ray photoelectron spectroscopy and density function theory calculations with NP models. The NM-HEA NPs have a lower degeneracy in energy level compared with the monometallic NPs, which is a common feature of HEA NPs. The local density of states (LDOS) of every surface atom was first revealed. Some atoms of the same constituent element in HEA NPs have different LDOS profiles, whereas atoms of other elements have similar LDOS profiles. In other words, one atom in HEA loses its elemental identity and it may be possible to create an ideal LDOS by adjusting the neighboring atoms. The tendency of the electronic structure change was shown by supervised learning. The NM-HEA NPs showed 10.8-times higher intrinsic activity for hydrogen evolution reaction than commercial Pt/C, which is one of the best catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.