Nonhomologous end joining (NHEJ) is a major pathway in multicellular eukaryotes for repairing double-strand DNA breaks (DSBs). Here, the NHEJ reactions have been reconstituted in vitro by using purified Ku, DNA-PK(cs), Artemis, and XRCC4:DNA ligase IV proteins to join incompatible ends to yield diverse junctions. Purified DNA polymerase (pol) X family members (pol mu, pol lambda, and TdT, but not pol beta) contribute to junctional additions in ways that are consistent with corresponding data from genetic knockout mice. The pol lambda and pol mu contributions require their BRCT domains and are both physically and functionally dependent on Ku. This indicates a specific biochemical function for Ku in NHEJ at incompatible DNA ends. The XRCC4:DNA ligase IV complex is able to ligate one strand that has only minimal base pairing with the antiparallel strand. This important aspect of the ligation leads to an iterative strand-processing model for the steps of NHEJ.
Hepatitis B virus (HBV) entry has been analyzed using infection-susceptible cells, including primary human hepatocytes, primary tupaia hepatocytes, and HepaRG cells. Recently, the sodium taurocholate cotransporting polypeptide (NTCP) membrane transporter was reported as an HBV entry receptor. In this study, we established a strain of HepG2 cells engineered to overexpress the human NTCP gene (HepG2-hNTCP-C4 cells). HepG2-hNTCP-C4 cells were shown to be susceptible to infection by blood-borne and cell culture-derived HBV. HBV infection was facilitated by pretreating cells with 3% dimethyl sulfoxide permitting nearly 50% of the cells to be infected with HBV. Knockdown analysis suggested that HBV infection of HepG2-hNTCP-C4 cells was mediated by NTCP. HBV infection was blocked by an anti-HBV surface protein neutralizing antibody, by compounds known to inhibit NTCP transporter activity, and by cyclosporin A and its derivatives. The infection assay suggested that cyclosporin B was a more potent inhibitor of HBV entry than was cyclosporin A. Further chemical screening identified oxysterols, oxidized derivatives of cholesterol, as inhibitors of HBV infection. Thus, the HepG2-hNTCP-C4 cell line established in this study is a useful tool for the identification of inhibitors of HBV infection as well as for the analysis of the molecular mechanisms of HBV infection.
Background: DNA polymerase lambda (Pol λ λ λ λ) was recently identified as a new member of the family X of DNA polymerases in eukaryotic cells. Pol λ λ λ λ contains a nuclear localization signal (NLS), a BRCA1-C terminal (BRCT) domain, a prolinerich region, helix-hairpin-helix (HhH) and pol X motifs. Since the amino acid sequence for Pol λ λ λ λ shares a high degree of homology to Pol β β β β, Pol λ λ λ λ is considered to have a similar enzymatic nature to Pol β β β β.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.