Assessment and management of Atlantic bluefin tuna Thunnus thynnus populations is hindered by our lack of knowledge regarding trans-Atlantic movement and connectivity of eastern and western populations. Here, we evaluated migratory and homing behaviors of bluefin tuna in several regions of the North Atlantic Ocean and Mediterranean Sea using chemical tags (δ 13 C and δ 18 O) in otoliths. Significant emigration of bluefin tuna from their place of origin was inferred from otolith δ 13 C and δ 18 O, with both eastern and western bluefin tuna commonly 'crossing the line' (45° W management boundary) in the Central North Atlantic Ocean and mixing with the other population. Several western migrants were also detected in Moroccan traps off the coast of Africa, indicating that trans-Atlantic movement occurs for members of the western population; however, the degree of mixing declined with proximity to the eastern spawning area (Mediterranean Sea). The origin of bluefin tuna collected at the entrance to the Strait of Gibraltar and from several regions within the Mediterranean Sea (Balearic Islands, Malta, and Sardinia) was essentially 100% eastern fish, demonstrating that natal homing is well developed by the eastern population, with western migrants rarely entering the Mediterranean Sea.
There is considerable international concern and scientific debate about the current state and future of tuna stocks worldwide and the capacity of Regional Fisheries Management Organisations to manage the associated fisheries effectively. In some cases, this concern has extended to predictions of imminent collapse with minimal chances of recovery, even under a commercial catch moratorium. As a viable alternative to a full fishery closure, the Commission for the Conservation of Southern Bluefin Tuna (CCSBT) has adopted a scientifically tested, adaptive rebuilding strategy for the depleted southern bluefin tuna (Thunnus maccoyii) stock. The management procedure (MP) adopted involves a harvest control rule that fully specifies the total allowable catch as a function of key indicators of stock status, adjusting future harvest levels every three years so as to meet the rebuilding targets agreed by CCSBT. It was chosen from a subset of candidate MPs selected following extensive simulation testing. This involved first selecting a wide range of plausible scenarios for stock status and input data, ranging from pessimistic to optimistic, against which the alternative candidate MPs were tested to ensure that they were robust to important uncertainties. This is the first time that a comprehensively evaluated MP has been adopted for an internationally managed tuna stock. Both the process and the outcomes have broad applicability to other internationally managed stocks.
Abstract. Two stocks of bluefin tuna (Thunnus thynnus) inhabit the north Atlantic; the western and eastern stocks spawn in the Gulf of Mexico and the Mediterranean Sea respectively. Trans-Atlantic movements occur outside spawning time whereas natal homing maintains stock structure. Commercial fisheries may exploit a mixed assemblage of both stocks. The incorporation of mixing rates into stock assessment is precluded by uncertainties surrounding stock discrimination. Otolith shape descriptors were used to characterise western and eastern stocks of Atlantic bluefin tuna in the present study and to estimate stock composition in catches of unknown origin. Otolith shape varied with length and between locations and years. Within a restricted size range (200-297-cm fork length (FL)) the two stocks were distinguished with an accuracy of 83%. Bayesian stock mixture analysis indicated that samples from the east Atlantic and Mediterranean were predominantly of eastern origin. The proportion assigned to the eastern stock showed slight spatial variation; however, overlapping 95% credible intervals indicated no significant difference (200-297 cm FL: central Atlantic, 73-100%; Straits of Gibraltar, 73-100%; Morocco, 50-99%; Portugal 64-100%). Otolith shape could be used in combination with other population markers to improve the accuracy of mixing rate estimates for Atlantic bluefin tuna.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.