The development of additive manufacturing technology leads to new concepts for design implants and prostheses. The necessity of such approaches is fueled by patient-oriented medicine. Such a concept involves a new way of understanding material and includes complex structural geometry, lattice constructions, and metamaterials. This leads to new design concepts. In the article, the structural design method is presented. The general approach is based on the separation of the micro- and macro-mechanical parameters. For this purpose, the investigated region as a complex of the basic cells was considered. Each basic cell can be described by a parameters vector. An initializing vector was introduced to control the changes in the parameters vector. Changing the parameters vector according to the stress-strain state and the initializing vector leads to changes in the basic cells and consequently to changes in the microarchitecture. A medium with a spheroidal pore was considered as a basic cell. Porosity and ellipticity were used for the parameters vector. The initializing vector was initialized and depended on maximum von Mises stress. A sample was designed according to the proposed method. Then, solid and structurally designed samples were produced by additive manufacturing technology. The samples were scanned by computer tomography and then tested by structural loads. The results and analyses were presented.
The article is devoted to the construction of lattice endoprosthesis for a long bone. Clinically, the main idea is to design a construction with the ability to improve bone growth. The article presents the algorithm for such a design. The construction should be produced by additive manufacturing. Such an approach allows using not only metallic materials but also ceramics and polymers. The algorithm is based on the influence function as a method to describe the elementary cell geometry. The elementary cell can be described by a number of parameters. The influence function maps the parameters to local stress in construction. Changing the parameters influences the stress distribution in the endoprosthesis. In the paper, a bipyramid was used as an elementary cell. Numerical studies were performed using the finite element method. As a result, manufacturing construction is described. Some problems for different orientations of growth are given. The clinical test was done and histological results were presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.