Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood 1 . Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours 2 . It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere 3,4 , and that ions have a relatively minor role 5 . Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded 6,7 . Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of α-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported by quantum chemical calculations of the cluster binding energies of representative HOMs. Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.It is thought that aerosol particles rarely form in the atmosphere without sulfuric acid 3,4 , except in certain coastal regions where iodine oxides are involved 8 . Furthermore, ions are thought to be relatively unimportant in the continental boundary layer, accounting for only around 10% of particle formation 5 . Sulfuric acid derives from anthropogenic and volcanic sulfur dioxide emissions as well as dimethyl sulfide from marine biota. However, typical daytime sulfuric acid concentrations (10 5 -10 7 cm −3, or 0.004-0.4 parts per trillion by volume (p.p.t.v.) at standard conditions) are too low for sulfuric acid and water alone to account for the particle formation rates observed in the lower atmosphere 9 , so additional vapours are required to stabilize any embryonic sulfuric acid clusters against evaporation. Base species such as amines can do this and can explain part of atmospheric particle nucleation 10 . It is well established that oxidation products of volatile organic compounds (VOCs) are important for particle growth 11, but whether their role in the smallest particles is in nucleation or growth alone has remained ambiguous 4,12,13 . Recently, however, it has been shown that oxidized organic compounds do indeed help to stabilize sulfuric acid clusters and probably play a major role in atmospheric particle nucleation 6,14,15 . We refer to these compounds as HOMs (highly oxygenated molecules) rather than ELVOCs (extremely low-volatility organic compounds) 16 because the measured compounds span a wide range of low volatilities.Here we report atmospheric particle formation solely from biogenic vapours. The data were obtained at the CERN CLOUD chamber (Cosmics Leaving OUtdoor Droplets; see Methods for experimental details) betw...
New particle formation (NPF) is the source of over half of the atmosphere's cloud condensation nuclei, thus influencing cloud properties and Earth's energy balance. Unlike in the planetary boundary layer, few observations of NPF in the free troposphere exist. We provide observational evidence that at high altitudes, NPF occurs mainly through condensation of highly oxygenated molecules (HOMs), in addition to taking place through sulfuric acid-ammonia nucleation. Neutral nucleation is more than 10 times faster than ion-induced nucleation, and growth rates are size-dependent. NPF is restricted to a time window of 1 to 2 days after contact of the air masses with the planetary boundary layer; this is related to the time needed for oxidation of organic compounds to form HOMs. These findings require improved NPF parameterization in atmospheric models.
Homogeneous nucleation and subsequent cluster growth leads to the formation of new aerosol particles in the atmosphere1. Nucleation of sulphuric acid and organic vapours is thought to be responsible for new particle formation over continents1,2 while iodine oxide vapours have been implicated in particle formation over coastal regions3–7. Molecular clustering pathways involved in atmospheric particle formation have been elucidated in controlled laboratory studies of chemically simple systems2,8–10. But no direct molecular-level observations of nucleation in atmospheric field conditions involving either sulphuric acid, organic or iodine oxide vapours have been reported to date11. Here we report field data from Mace Head, Ireland and supporting data from northern Greenland and Queen Maud Land, Antarctica that allow for the identification of the molecular steps involved in new particle formation in an iodine-rich, coastal atmospheric environment. We find that the formation and initial growth process is almost exclusively driven by iodine oxoacids and iodine oxide vapours with average resulting cluster O:I ratios of 2.4. Based on the high O:I ratio, together with observed high concentrations of iodic acid, HIO3, we suggest that cluster formation primarily proceeds by sequential addition of iodic acid HIO3, followed by intra-cluster restructuring to I2O5 and recycling of water in the atmosphere or upon drying. Overall, our study provides ambient atmospheric molecular-level observations of nucleation, supporting the previously suggested role of iodine containing species in new particle formation3–7, 12–18, and identifies the key nucleating compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.