ARchaeological RObot systems for the World's Seas (ARROWS) EU Project proposes to adapt and develop low-cost Autonomous Underwater Vehicle (AUV) technologies to significantly reduce the cost of archaeological operations, covering the full extent of archaeological campaign. ARROWS methodology is to identify the archaeologists requirements in all phases of the campaign and to propose related technological solutions. Starting from the necessities identified by archaeological project partners in collaboration with the Archaeology Advisory Group, a board composed of European archaeologists from outside ARROWS, the aim is the development of a heterogeneous team of cooperating AUVs capable of comply with a complete archaeological autonomous mission. Three new different AUVs have been designed in the framework of the project according to the archaeologists' indications: MARTA, characterized by a strong hardware modularity for ease of payload and propulsion systems configuration change; U-CAT, a turtle inspired bio-mimetic robot devoted to shipwreck penetration and A Size AUV, a vehicle of small dimensions and weight easily deployable even by a single person. These three vehicles will cooperate within the project with AUVs already owned by ARROWS partners exploiting a distributed high-level control software based on the World Model Service (WMS), a storage system for the environment knowledge, updated in real-time through online payload data process, in the form of an ontology. The project includes also the development of a cleaning tool for well-known artifacts maintenance operations. The paper presents the current stage of the project that will lead to overall system final demonstrations, during Summer 2015, in two different scenarios, Sicily (Italy) and Baltic Sea (Estonia).
MARTA (MARine Tool for Archaeology) is a modular AUV (Autonomous Underwater Vehicle) designed and developed by the University of Florence in the framework of the ARROWS (ARchaeological RObot systems for the World’s Seas) FP7 European project. The ARROWS project challenge is to provide the underwater archaeologists with technological tools for cost affordable campaigns: i.e. ARROWS adapts and develops low cost AUV technologies to significantly reduce the cost of archaeological operations, covering the full extent of an archaeological campaign (underwater mapping, diagnosis and cleaning tasks). The tools and methodologies developed within ARROWS comply with the “Annex” of the 2001 UNESCO Convention for the protection of Underwater Cultural Heritage (UCH). The system effectiveness and MARTA performance will be demonstrated in two scenarios, different as regards the environment and the historical context, the Mediterranean Sea (Egadi Islands) and the Baltic Sea
SummaryIntroduction: This article is part of the Focus Theme of Methods of Information in Medicine on “Biosignal Interpretation: Advanced Methods for Neural Signals and Images”.Objectives: This paper presents the main concepts of a decision making approach for the remote management of COPD patients based on the early detection of disease exacerbation episodes.Methods: An e-diary card is defined to evaluate a number of physiological variables and clinical parameters acquired remotely by means of wearable and environmental sensors deployed in patients’ long-stay settings. The automatic evaluation of the card results in a so-called Chronic Status Index (CSI) whose computation is tailored to patients’ specific manifestation of the disease (i.e., patient’s phenotype). The decision support method relies on a parameterized analysis of CSI variations so as to early detect worsening changes, identify exacerbation severity and track the patterns of recovery.Results: A preliminary study, carried out in real settings with 30 COPD patients monitored at home, has shown the validity and sensitivity of the method proposed, which was effectively able to timely and correctly identify patients’ critical situation.Conclusion: The preliminary results showed that the proposed e-diary card, which presents several novel features with respect to other solutions presented in the literature, can be practically used to remotely monitor COPD patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.