BackgroundThe honey bee is an important model system for increasing understanding of molecular and neural mechanisms underlying social behaviors relevant to the agricultural industry and basic science. The western honey bee, Apis mellifera, has served as a model species, and its genome sequence has been published. In contrast, the genome of the Asian honey bee, Apis cerana, has not yet been sequenced. A. cerana has been raised in Asian countries for thousands of years and has brought considerable economic benefits to the apicultural industry. A cerana has divergent biological traits compared to A. mellifera and it has played a key role in maintaining biodiversity in eastern and southern Asia. Here we report the first whole genome sequence of A. cerana.ResultsUsing de novo assembly methods, we produced a 238 Mbp draft of the A. cerana genome and generated 10,651 genes. A.cerana-specific genes were analyzed to better understand the novel characteristics of this honey bee species. Seventy-two percent of the A. cerana-specific genes had more than one GO term, and 1,696 enzymes were categorized into 125 pathways. Genes involved in chemoreception and immunity were carefully identified and compared to those from other sequenced insect models. These included 10 gustatory receptors, 119 odorant receptors, 10 ionotropic receptors, and 160 immune-related genes.ConclusionsThis first report of the whole genome sequence of A. cerana provides resources for comparative sociogenomics, especially in the field of social insect communication. These important tools will contribute to a better understanding of the complex behaviors and natural biology of the Asian honey bee and to anticipate its future evolutionary trajectory.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-16-1) contains supplementary material, which is available to authorized users.
Background Helicoverpa armigera and Helicoverpa zea are major caterpillar pests of Old and New World agriculture, respectively. Both, particularly H. armigera, are extremely polyphagous, and H. armigera has developed resistance to many insecticides. Here we use comparative genomics, transcriptomics and resequencing to elucidate the genetic basis for their properties as pests.ResultsWe find that, prior to their divergence about 1.5 Mya, the H. armigera/H. zea lineage had accumulated up to more than 100 more members of specific detoxification and digestion gene families and more than 100 extra gustatory receptor genes, compared to other lepidopterans with narrower host ranges. The two genomes remain very similar in gene content and order, but H. armigera is more polymorphic overall, and H. zea has lost several detoxification genes, as well as about 50 gustatory receptor genes. It also lacks certain genes and alleles conferring insecticide resistance found in H. armigera. Non-synonymous sites in the expanded gene families above are rapidly diverging, both between paralogues and between orthologues in the two species. Whole genome transcriptomic analyses of H. armigera larvae show widely divergent responses to different host plants, including responses among many of the duplicated detoxification and digestion genes.ConclusionsThe extreme polyphagy of the two heliothines is associated with extensive amplification and neofunctionalisation of genes involved in host finding and use, coupled with versatile transcriptional responses on different hosts. H. armigera’s invasion of the Americas in recent years means that hybridisation could generate populations that are both locally adapted and insecticide resistant.Electronic supplementary materialThe online version of this article (doi:10.1186/s12915-017-0402-6) contains supplementary material, which is available to authorized users.
ABSTRACT:The relationship between aphids and their host plants is thought to be functionally analogous to plant-pathogen interactions. Although virulence effector proteins that mediate plant defenses are well-characterized for pathogens such as bacteria, oomycetes, and nematodes, equivalent molecules in aphids and other phloem-feeders are poorly understood. A dual transcriptomic-proteomic approach was adopted to generate a catalog of candidate effector proteins from the salivary glands of the pea aphid, Acyrthosiphon pisum. Of the 1557 transcript supported and 925 mass spectrometry identified proteins, over 300 proteins were identified with secretion signals, including proteins that had previously been identified directly from the secreted saliva. Almost half of the identified proteins have no homologue outside aphids and are of unknown function. Many of the genes encoding the putative effector proteins appear to be evolving at a faster rate than homologues in other insects, and there is strong evidence that genes with multiple copies in the genome are under positive selection. Many of the candidate aphid effector proteins were previously characterized in typical phytopathogenic organisms (e.g., nematodes and fungi) and our results highlight remarkable similarities in the saliva from plant-feeding nematodes and aphids that may indicate the evolution of common solutions to the plant-parasitic lifestyle.
Aphids and related insects feed from a single cell type in plants: the phloem sieve element. Genetic resistance to Acyrthosiphon kondoi Shinji (bluegreen aphid or blue alfalfa aphid) has been identified in Medicago truncatula Gaert. (barrel medic) and backcrossed into susceptible cultivars. The status of M. truncatula as a model legume allows an in-depth study of defense against this aphid at physiological, biochemical, and molecular levels. In this study, two closely related resistant and susceptible genotypes were used to characterize the aphid-resistance phenotype. Resistance conditions antixenosis since migratory aphids were deterred from settling on resistant plants within 6 h of release, preferring to settle on susceptible plants. Analysis of feeding behavior revealed the trait affects A. kondoi at the level of the phloem sieve element. Aphid reproduction on excised shoots demonstrated that resistance requires an intact plant. Antibiosis against A. kondoi is enhanced by prior infestation, indicating induction of this phloem-specific defense. Resistance segregates as a single dominant gene, AKR (Acyrthosiphon kondoi resistance), in two mapping populations, which have been used to map the locus to a region flanked by resistance gene analogs predicted to encode the CC-NBS-LRR subfamily of resistance proteins. This work provides the basis for future molecular analysis of defense against phloem parasitism in a plant model system.Parasitism by phloem-feeding insects, such as aphids and whiteflies, is a widespread and often serious constraint on plant production. Aphids have been especially successful in exploiting a broad range of vascular plants. In temperate regions, approximately one in four plant species can be colonized by at least one species of aphid (Dixon, 1998). Phloem feeders may harm plants by direct feeding damage and by vectoring microbial pathogens. These insects are exquisitely adapted to their hosts, feeding from a single cell type, the sieve element, at the plant interior. This cell-specific mode of herbivory presents both a technical challenge and an opportunity for plant biologists to elucidate ways in which plants defend against parasitism of the translocation stream.Despite the ubiquity of phloem feeding, basic knowledge of its relation to plant physiology and, in particular, to plant defense has lagged behind knowledge of plant-microbe interactions. This imbalance is starting to change, however, as molecular tools are applied to the study of induced responses to phloem feeding and to mechanisms of genetic resistance (for review, see Walling, 2000;Kessler and Baldwin, 2002;Moran et al., 2002). Studies with Arabidopsis (Arabidopsis thaliana) and cultivated species have identified changes in gene expression when plants are challenged with phloem feeders (Walling, 2000;Moran and Thompson, 2001;Moran et al., 2002;de Ilarduya et al., 2003;Zhu-Salzman et al., 2004). Considering the intimate and enduring contact of insect stylets with the host tissue, it is not surprising that these and other stud...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.