Variable X-ray and γ-ray emission is characteristic of the most extreme physical processes in the Universe, and studying the sources of these energetic photons has been a major driver in astronomy for the past 50 years. Here we present multiwavelength observations of a unique γ-ray selected transient, discovered by Swift, which was accompanied by bright emission across the electromagnetic spectrum, and whose properties are unlike any previously observed source. We pinpoint the event to the center of a small, star-forming galaxy at redshift z = 0.3534. Its high-energy emission has lasted much longer than any gamma-ray burst, while its peak luminosity was ∼100 times higher than bright active galactic nuclei. The association of the outburst with the cen-1 arXiv:1104.3356v1 [astro-ph.HE]
We report the Swift discovery of the nearby long, soft gamma-ray burst GRB 100316D, and the subsequent unveiling of its low-redshift host galaxy and associated supernova. We derive the redshift of the event to be z = 0.0591 ± 0.0001 and provide accurate astrometry for the gamma-ray burst (GRB) supernova (SN). We study the extremely unusual prompt emission with time-resolved γ -ray to X-ray spectroscopy and find that the spectrum is best modelled with a thermal component in addition to a synchrotron emission component with a low peak energy. The X-ray light curve has a remarkably shallow decay out to at least 800 s. The host is a bright, blue galaxy with a highly disturbed morphology and we use Gemini-South, Very Large Telescope and Hubble Space Telescope observations to measure some of the basic host galaxy properties. We compare and contrast the X-ray emission and host galaxy of GRB 100316D to a subsample of GRB-SNe. GRB 100316D is unlike the majority of GRB-SNe in its X-ray evolution, but resembles rather GRB 060218, and we find that these two events have remarkably similar high energy prompt emission properties. Comparison of the host galaxies of GRB-SNe demonstrates, however, that there is a great diversity in the environments in which GRB-SNe can be found. GRB 100316D is an important addition to the currently sparse sample of spectroscopically confirmed GRB-SNe, from which a better understanding of long GRB progenitors and the GRB-SN connection can be gleaned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.