The Photodetector Array Camera and Spectrometer (PACS) is one of the three science instruments on ESA's far infrared and submillimetre observatory. It employs two Ge:Ga photoconductor arrays (stressed and unstressed) with 16 × 25 pixels, each, and two filled silicon bolometer arrays with 16 × 32 and 32 × 64 pixels, respectively, to perform integral-field spectroscopy and imaging photometry in the 60−210 μm wavelength regime. In photometry mode, it simultaneously images two bands, 60−85 μm or 85−125 μm and 125−210 μm, over a field of view of ∼1.75 × 3.5 , with close to Nyquist beam sampling in each band. In spectroscopy mode, it images a field of 47 × 47 , resolved into 5 × 5 pixels, with an instantaneous spectral coverage of ∼ 1500 km s −1 and a spectral resolution of ∼175 km s −1 . We summarise the design of the instrument, describe observing modes, calibration, and data analysis methods, and present our current assessment of the in-orbit performance of the instrument based on the performance verification tests. PACS is fully operational, and the achieved performance is close to or better than the pre-launch predictions.
Key words. space vehicles: instruments -instrumentation: photometers -instrumentation: spectrographsHerschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
We compare multi-wavelength star formation rate (SFR) indicators out to z ∼ 3 in the GOODS-South field. Our analysis uniquely combines U -to-8µm photometry from FIREWORKS, MIPS 24 µm and PACS 70, 100, and 160 µm photometry from the PEP survey, and Hα spectroscopy from the SINS survey. We describe a set of conversions that lead to a continuity across SFR indicators. A luminosityindependent conversion from 24 µm to total infrared luminosity yields estimates of L IR that are in the median consistent with the L IR derived from PACS photometry, albeit with significant scatter. Dust correction methods perform well at low to intermediate levels of star formation. They fail to recover the total amount of star formation in systems with large SF R IR /SF R UV ratios, typically occuring at the highest SFRs (SF R UV +IR 100 M ⊙ /yr) and redshifts (z 2.5) probed. Finally, we confirm that Hα-based SFRs at 1.5 < z < 2.6 are consistent with SF R SED and SF R UV +IR provided extra attenuation towards HII regions is taken into account (A V,neb = A V,continuum /0.44). With the cross-calibrated SFR indicators in hand, we perform a consistency check on the star formation histories inferred from SED modeling. We compare the observed SFR-M relations and mass functions at a range of redshifts to equivalents that are computed by evolving lower redshift galaxies backwards in time. We find evidence for underestimated stellar ages when no stringent constraints on formation epoch are applied in SED modeling. We demonstrate how resolved SED modeling, or alternatively deep UV data, may help to overcome this bias. The age bias is most severe for galaxies with young stellar populations, and reduces towards older systems. Finally, our analysis suggests that SFHs typically vary on timescales that are long (at least several 100 Myr) compared to the galaxies' dynamical time.
Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Deep far-infrared photometric surveys studying galaxy evolution and the nature of the cosmic infrared background are a key strength of the Herschel mission. We describe the scientific motivation for the PACS Evolutionary Probe (PEP) guaranteed time key program and its role within the entire set of Herschel surveys, and the field selection that includes popular multiwavelength fields such as GOODS, COSMOS, Lockman Hole, ECDFS, and EGS. We provide an account of the observing strategies and data reduction methods used. An overview of first science results illustrates the potential of PEP in providing calorimetric star formation rates for high-redshift galaxy populations, thus testing and superseding previous extrapolations from other wavelengths, and enabling a wide range of galaxy evolution studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.