Next-to-leading-order QCD analyses of the ZEUS data on deep inelastic scattering together with fixed-target data have been performed, from which the gluon and quark densities of the proton and the value of the strong coupling constant ␣ s (M Z ) were extracted. The study includes a full treatment of the experimental systematic uncertainties including point-to-point correlations. The resulting uncertainties in the parton density functions are presented. A combined fit for ␣ s (M Z ) and the gluon and quark densities yields a value for ␣ s (M Z ) in agreement with the world average. The parton density functions derived from ZEUS data alone indicate the importance of HERA data in determining the sea quark and gluon distributions at low x. The limits of applicability of the theoretical formalism have been explored by comparing the fit predictions to ZEUS data at very low Q 2 .
The production of neutrons carrying at least 20% of the proton beam energy (x L > 0.2) in e + p collisions has been studied with the ZEUS detector at HERA for a wide range of Q 2 , the photon virtuality, from photoproduction to deep inelastic scattering. The neutron-tagged cross section, ep → e ′ Xn, is measured relative to the inclusive cross section, ep → e ′ X, thereby reducing the systematic uncertainties. For x L > 0.3, the rate of neutrons in photoproduction is about half of that measured in hadroproduction, which constitutes a clear breaking of factorisation. There is about a 20% rise in the neutron rate between photoproduction and deep inelastic scattering, which may be attributed to absorptive rescattering in the γp system. or 0.64 < x L < 0.82, the rate of neutrons is almost independent of the Bjorken scaling variable x and Q 2 . However, at lower and higher x L values, there is a clear but weak dependence on these variables, thus demonstrating the breaking of limiting fragmentation. The neutron-tagged structure function, F
Experimental results on the production of dimuons by 800-GeV protons incident on a copper target are presented. The results include measurements of both the continuum of dimuons and the dimuon decays of the three lowest-mass Y S states. A description of the apparatus, data acquisition, and analysis techniques is included. A comparison of the results with data taken at lower incident energies indicates a scaling behavior of the continuum dimuon yields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.