Abstract. In the framework of the ESO Large Programme "First Stars", very high-quality spectra of some 70 very metal-poor dwarfs and giants were obtained with the ESO VLT and UVES spectrograph. These stars are likely to have descended from the first generation(s) of stars formed after the Big Bang, and their detailed composition provides constraints on issues such as the nature of the first supernovae, the efficiency of mixing processes in the early Galaxy, the formation and evolution of the halo of the Galaxy, and the possible sources of reionization of the Universe. This paper presents the abundance analysis of an homogeneous sample of 35 giants selected from the HK survey of Beers et al. (1992Beers et al. ( , 1999, emphasizing stars of extremely low metallicity: 30 of our 35 stars are in the range −4.1 < [Fe/H] < −2.7, and 22 stars have [Fe/H] < −3.0. Our new VLT/UVES spectra, at a resolving power of R ∼ 45 000 and with signal-to-noise ratios of 100-200 per pixel over the wavelength range 330-1000 nm, are greatly superior to those of the classic studies of McWilliam et al. (1995) and Ryan et al. (1996). The immediate objective of the work is to determine precise, comprehensive, and homogeneous element abundances for this large sample of the most metal-poor giants presently known. In the analysis we combine the spectral line modeling code "Turbospectrum" with OSMARCS model atmospheres, which treat continuum scattering correctly and thus allow proper interpretation of the blue regions of the spectra, where scattering becomes important relative to continuous absorption (λ < 400 nm). We obtain detailed information on the trends of elemental abundance ratios and the star-to-star scatter around those trends, enabling us to separate the relative contributions of cosmic scatter and observational/analysis errors. Abundances of 17 elements from C to Zn have been measured in all stars, including K and Zn, which have not previously been detected in stars with [Fe/H] < −3.0. Among the key results, we discuss the oxygen abundance (from the forbidden [OI] line), the different and sometimes complex trends of the abundance ratios with metallicity, the very tight relationship between the abundances of certain elements (e.g., Fe and Cr), and the high [Zn/Fe] ratio in the most metal-poor stars. Within the error bars, the trends of the abundance ratios with metallicity are consistent with those found in earlier literature, but in many cases the scatter around the average trends is much smaller than found in earlier studies, which were limited to lower-quality spectra. We find that the cosmic scatter in several element ratios may be as low as 0.05 dex. The evolution of the abundance trends and scatter with declining metallicity provides strong constraints on the yields of the first supernovae and their mixing into the early ISM. The abundance ratios found in our sample do not match the predicted yields from pair-instability hypernovae, but are consistent with element production by supernovae with progenitor masses up to 100 M . Mo...
In the last decade, the photospheric solar metallicity as determined from spectroscopy experienced a remarkable downward revision. Part of this effect can be attributed to an improvement of atomic data and the inclusion of NLTE computations, but also the use of hydrodynamical model atmospheres seemed to play a role. This "decrease" with time of the metallicity of the solar photosphere increased the disagreement with the results from helioseismology. With a CO 5 BOLD 3D model of the solar atmosphere, the CIFIST team at the Paris Observatory re-determined the photospheric solar abundances of several elements, among them C, N, and O. The spectroscopic abundances are obtained by fitting the equivalent width and/or the profile of observed spectral lines with synthetic spectra computed from the 3D model atmosphere. We conclude that the effects of granular fluctuations de- E. Caffau et al. pend on the characteristics of the individual lines, but are found to be relevant only in a few particular cases. 3D effects are not responsible for the systematic lowering of the solar abundances in recent years. The solar metallicity resulting from this analysis is Z = 0.0153, Z/X = 0.0209.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.