ABSTRACT. Snow grain-size characterization, its vertical and temporal evolution is a key parameter for the improvement and validation of snow and radiative transfer models (optical and microwave) as well as for remote-sensing retrieval methods. We describe two optical methods, one active and one passive shortwave infrared, for field determination of the specific surface area (SSA) of snow grains. We present a new shortwave infrared (SWIR) camera approach. This new method is compared with a SWIR laserbased system measuring snow albedo with an integrating sphere (InfraRed Integrating Sphere (IRIS)). Good accuracy (10%) and reproducibility in SSA measurements are obtained using the IRIS system on snow samples having densities greater than 200 kg m -3 , validated against X-ray microtomography measurements. The SWIRcam approach shows improved sensitivity to snow SSA when compared to a near-infrared camera, giving a better contrast of the snow stratigraphy in a snow pit.
[1] Atmospheric water vapor is a key parameter for the analysis of climatic systems (greenhouse gas effect), in particular over high latitudes where water vapor displays an important seasonal variability. The sparse spatial and temporal sampling of atmospheric water vapor observations across Canada needs to be improved. A series of instruments and methods including a 940-nm solar absorption band radiometer (R) and radiosonde (S) analysis from a numerical weather prediction model and a ground-based bi-frequency Global Positioning System (GPS) were used to evaluate the integrated atmospheric water vapor (IWV) at various sites in Canada and Alaska from a multiyear database. The IWV-R measurements were collected within the framework of the North American Sun Radiometry network (AERONET/AEROCAN). Intercomparisons between [IWV-GPS and IWV-S], [IWV-R and IWV-GPS], and [IWV-R and IWV-S]show root mean square (RMS) differences of 1.8, 1.9, and 2.2 kg m À2 , respectively. GPS meteorology appears to be the easiest approach to calibrate the solar radiometer water vapor band owing to its flexibility, and it allows us to overcome the Sun radiometry limitation in high-latitude areas like the Arctic. The sensitivity of the GPS retrieval to various parameters like GPS satellite constellation and meteorological data are discussed. The classical linear relationship between the surface temperature and the integrated weighted mean temperature profile needed for IWV-GPS retrieval may be significantly different for Arctic air masses compared with midlatitude air masses in the case of tropospheric temperature profile inversion. An ever-expanding multiyear (1994)(1995)(1996)(1997)(1998)(1999)(2000)(2001) North American summer water vapor climatology, derived from AERONET/Canadian Sun Radiometer Network, is presented and analyzed, showing a mean value of 19.8 ± 6.1 kg m À2 and variations from 17 kg m À2 in Alaska to 23 kg m À2 in southeastern Canada. The results in Bonanza Creek, Alaska, show significant interannual variations with a peak in 1997, which may be linked to an El Niño event that occurred in the same year. Such a database may also be useful for climate model validation as shown for the Canadian Global Environmental Model (RMS difference of 3.4 kg m À2 ). In the end we show that, even if data are selected only for cloud-free atmospheres, there are no significant differences as compared with radiosonde climatology at Canadian Northwestern sites ( 3% relatively to Bonanza Creek summer mean value).
Snow cover plays a key role in the climate system by influencing the transfer of energy and mass between the soil and the atmosphere. In particular, snow water equivalent (SWE) is of primary importance for climatological and hydrological processes and is a good indicator of climate variability and change. Efforts to quantify SWE over land from spaceborne passive microwave measurements have been conducted since the 1980s, but a more suitable method has yet to be developed for hemispheric-scale studies. Tools such as snow thermodynamic models allow for a better understanding of the snow cover and can potentially significantly improve existing snow products at the regional scale.In this study, the use of three snow models [SNOWPACK, CROCUS, and Snow Thermal Model (SNTHERM)] driven by local and reanalysis meteorological data for the simulation of SWE is investigated temporally through three winter seasons and spatially over intensively sampled sites across northern Qué bec. Results show that the SWE simulations are in agreement with ground measurements through three complete winter seasons (2004/05, 2005/06, and 2007/08) in southern Qué bec, with higher error for 2007/08. The correlation coefficients between measured and predicted SWE values ranged between 0.72 and 0.99 for the three models and three seasons evaluated in southern Qué bec. In subarctic regions, predicted SWE driven with the North American Regional Reanalysis (NARR) data fall within the range of measured regional variability. NARR data allow snow models to be used regionally, and this paper represents a first step for the regionalization of thermodynamic multilayered snow models driven by reanalysis data for improved global SWE evolution retrievals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.