Abstract:Plasma-wall interaction (PWI) is important for the material choice in ITER and for the plasma scenarios compatible with material constraints. In this paper different aspects of the PWI are assessed in their importance for the initial wall materials choice: CFC for the strikepoint tiles, W in the divertor and baffle and Be on the first wall. Further material options are addressed for comparison, such as W divertor / Be first wall and all-W or all-C.One main parameter in this evaluation is the particle flux to the main vessel wall. One detailed plasma scenario exists for a Q=10 ITER discharge [ 1 ] which was taken as the basis of further erosion and tritium retention evaluations. As the assessment of steady state wall fluxes from a scaling of present fusion devices indicates that global wall fluxes may be a factor of 4±3 higher, this margin has been adopted as uncertainty of the scaling.With these wall and divertor fluxes, important PWI processes such as erosion and tritium accumulation have been evaluated:• It was found that the steady state erosion is no problem for the lifetime of plasma-facing divertor components. Be wall erosion may pose a problem in case of a concentration of the wall fluxes to small wall areas. ELM erosion may drastically limit the PFC lifetime if ELMs are not mitigated to energies below 0.5 MJ.• Dust generation is still a process which requires more attention. Conversion from gross or net erosion to dust and the assessment of dust on hot surfaces need to be investigated.• For low-Z materials the build-up of the tritium inventory is dominated by co-deposition with eroded wall atoms.• For W, where erosion and tritium co-deposition are small, the implantation, diffusion and bulk trapping constitute the dominant retention processes. First extrapolations with models based on laboratory data show small contributions to the inventory. For later ITER phases and the extrapolation to DEMO additional tritium trapping sites due to neutron-irradiation damage need to be taken into account.Finally the expected values for erosion and tritium retention are compared to the ITER administrative limits for the lifetime, dust and tritium inventory.
The evaluation of hydrogenic retention in present tokamaks is of crucial importance to estimate the expected tritium (T) vessel inventory in ITER, limited from safety considerations to 350g. In the framework of the European Task Force on Plasma Wall Interaction (EU TF on PWI) efforts are underway to investigate gas balance and fuel retention during discharges, and to compare the data obtained with those from post-mortem analysis of in-vessel components exposed over whole experimental campaigns. This paper summarizes the principal findings from coordinated studies on gas balance and fuel retention from a number of European tokamaks, viz. ASDEX-Upgrade (AUG), JET, TEXTOR and Tore Supra (TS). For most devices, the long-term retention fraction deduced from integrated particle balance is ∼ 10-20 %. This is larger than the ~3-4% deduced from post mortem analysis of plasma facing components (PFCs). However, from the database available for tokamaks with their main PFCs made of carbon, the important conclusion is that the T inventory limit (set by the working guideline for operations) could be reached in ITER within fewer than 100 discharges. This, therefore, would seriously impact on operation of the device unless efficient T removal processes were developed.
Data on erosion and melting of beryllium upper limiter tiles, so-called dump plates (DP), are presented for all three campaigns in the JET tokamak with the ITER-like wall. Highresolution images of the upper wall of JET, show clear signs of flash melting on the ridge of the roof-shaped tiles. The melt layers move in the poloidal direction from the inboard to the outboard tile ending on the last DP tile with an upward going waterfall-like melt structure. Melting was caused mainly by unmitigated plasma disruptions. During three ILW campaigns around 15% of all 12376 plasma pulses were catalogued as disruptions. Thermocouple data from the upper dump plates tiles showed a reduction in energy delivered by disruptions with fewer extreme events in the third campaign, ILW-3, in comparison to ILW-1 and ILW-2. The total Be erosion assessed via precision weighing of tiles retrieved from JET during shutdowns indicated the increasing mass loss across campaigns of up to 0.6 g from a single tile. The mass of splashed melted Be on the upper walls was also estimated using the high-resolution images of wall components taken after each campaign. The results agree with the total material loss estimated by tile weighing (~130 g). Morphological and structural analysis performed on Be melt layers revealed a multilayer structure of re-solidified material composed mainly of Be and BeO with some heavy metal impurities Ni, Fe, W. IBA analysis performed across the affected tile ridge in both poloidal and toroidal direction revealed a low D concentration, in the range 1-4 x 10 17 D atoms/cm 2 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.