A series of experiments has been conducted in order to investigate the azimuthal structures formed by the interactions of cylindrically converging plasma flows during the ablation phase of aluminium wire array Z pinch implosions. These experiments were carried out using the 1.4 MA, 240 ns MAGPIE generator at Imperial College London. The main diagnostic used in this study was a two-colour, end-on, Mach-Zehnder imaging interferometer, sensitive to the axially integrated electron density of the plasma. The data collected in these experiments reveal the strongly collisional dynamics of the aluminium ablation streams. The structure of the flows is dominated by a dense network of oblique shock fronts, formed by supersonic collisions between adjacent ablation streams. An estimate for the range of the flow Mach number (M ¼ 6.2-9.2) has been made based on an analysis of the observed shock geometry. Combining this measurement with previously published Thomson Scattering measurements of the plasma flow velocity by Harvey-Thompson et al. [Physics of Plasmas 19, 056303 (2012)] allowed us to place limits on the range of the ZT e of the plasma. The detailed and quantitative nature of the dataset lends itself well as a source for model validation and code verification exercises, as the exact shock geometry is sensitive to many of the plasma parameters. Comparison of electron density data produced through numerical modelling with the Gorgon 3D MHD code demonstrates that the code is able to reproduce the collisional dynamics observed in aluminium arrays reasonably well. V C 2013 American Institute of Physics. [http://dx
A new experimental platform was developed, based on the use of supersonic plasma flow from the ablation stage of an inverse wire array z-pinch, for studies of shocks in magnetized high energy density physics plasmas in a well-defined and diagnosable 1-D interaction geometry. The mechanism of flow generation ensures that the plasma flow (Re M $ 50, M S $ 5, M A $ 8, V flow % 100 km/s) has a frozen-in magnetic field at a level sufficient to affect shocks formed by its interaction with obstacles. It is found that in addition to the expected accumulation of stagnated plasma in a thin layer at the surface of a planar obstacle, the presence of the magnetic field leads to the formation of an additional detached density jump in the upstream plasma, at a distance of $c/x pi from the obstacle. Analysis of the data obtained with Thomson scattering, interferometry, and local magnetic probes suggests that the sub-shock develops due to the pile-up of the magnetic flux advected by the plasma flow. V C 2014 AIP Publishing LLC. [http://dx.
The role of radiative cooling during the evolution of a bow shock was studied in laboratoryastrophysics experiments that are scalable to bow shocks present in jets from young stellar objects. The laboratory bow shock is formed during the collision of two counter-streaming, supersonic plasma jets produced by an opposing pair of radial foil Z-pinches driven by the current pulse from the MAG-PIE pulsed-power generator. The jets have different flow velocities in the laboratory frame and the experiments are driven over many times the characteristic cooling time-scale. The initially smooth bow shock rapidly develops small-scale non-uniformities over temporal and spatial scales that are consistent with a thermal instability triggered by strong radiative cooling in the shock. The growth of these perturbations eventually results in a global fragmentation of the bow shock front. The formation of a thermal instability is supported by analysis of the plasma cooling function calculated for the experimental conditions with the radiative packages ABAKO/RAPCAL.
A Thomson scattering diagnostic has been used to measure the parameters of cylindrical wire array Z pinch plasmas. The scattering operates in the collective regime (α>1) allowing spatially localised measurements of the ion or electron plasma temperatures and of the plasma bulk velocity. The ablation flow is found to accelerate towards the axis reaching peak velocities of 1.2–1.3 × 107 cm/s in aluminium and ∼1 × 107 cm/s in tungsten arrays. Measurements of the precursor ion temperature shortly after formation are found to correspond to the kinetic energy of the converging ablation flow. Measurements during the implosion phase of tungsten arrays show the main imploding mass reaches velocities of ∼1.4–1.7 × 107 cm/s and is non-zero even at large radii close to the start of the x-ray pulse indicating current flow in the trailing mass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.