Tetrabromobisphenol A (TBBPA) and hexabromocyclododecane diastereoisomers (alpha-, beta/-, and gamma-HBCD) were investigated in effluents from sewage treatment works, landfill leachates, sediments, and food web organisms of the North Sea basin. Residues were quantified by liquid chromatography-mass spectrometry. Both flame retardants were enriched in sewage sludges, where a maximum total (sigma) HBCD concentration of 9.1 mg/kg (dry weight; d.w.) was found; TBBPA was at levels of 102 microg/kg. Landfill leachates from The Netherlands showed up to 36 mg (sigmaHBCD)/ kg (d.w.). gamma-HBCD dominated isomeric profiles in sediments, and concentrations were elevated near to a site of HBCD manufacture. alpha-HBCD was the primary congener detected in marine mammals; however, very few samples exhibited TBBPA. sigmaHBCD ranged from 2.1 to 6.8 mg/kg (lipid weight; l.w.) in liver and blubber of harbor porpoises (Phocoena phocoena) and seals (Phoca vitulina). TBBPA levels in cormorant (Phalacrocorax carbo) livers were up to 1 order of magnitude lower compared to sigmaHBCD. HBCD in eels (Anguilla anguilla) from the Scheldt basin (Belgium) reflected the spatial distribution of concentrations in local sediments. This study shows evidence of HBCD bioaccumulation at the trophic level and biomagnification in the ascending aquatic food chain, and these findings justify risk assessment studies at the ecosystem level.
Due to their unique surfactant properties, poly- and perfluorinated compounds (PFCs) have been extensively used and can be found all over the environment. Concern about their environmental fate and toxicological properties has initiated several research projects. In the present study, we investigated if PFCs can compete with thyroxine (T(4), i.e., the transport form of thyroid hormone) for binding to the human thyroid hormone transport protein transthyretin (TTR). Such competitive capacity may lead to decreased thyroid hormone levels as previously reported for animals exposed to PFCs. Twenty-four PFCs, together with 6 structurally similar natural fatty acids, were tested for binding capacity in a radioligand-binding assay. The binding potency decreased in the order: perfluorohexane sulfonate > perfluorooctane sulfonate/perfluorooctanoic acid > perfluoroheptanoic acid > sodium perfluoro-1-octanesulfinate > perfluorononanoic acid, with TTR binding potencies 12.5-50 times lower than the natural ligand T(4). Some lower molecular weight compounds with structural similarity to these PFCs were > 100 times less potent than T(4). Simple descriptors based on the two-dimensional molecular structures of the compounds were used to visualize the chemical variation and to model the structure-activity relationship for the competitive potencies of the TTR-binding compounds. The models indicated the dependence on molecular size and functional groups but demanded a more detailed description of the chemical properties and data for validation and further quantitative structure-activity relationship (QSAR) development. Competitive binding of PFCs to TTR, as observed for human TTR in the present study, may explain altered thyroid hormone levels described for PFC-exposed rats and monkeys. Median human blood levels of the most potent TTR-binding PFCs are one to two orders of magnitude lower than concentration at 50% inhibition (IC(50)) values determined in the present study. In addition, this study contributes to the understanding of the bioaccumulation of PFCs in man and possibly in other wildlife species.
Data sets on CB concentrations in fish-eating mammals from five laboratories were combined to test and refine a pharmacokinetic model. Clear differences in PCB patterns were observed between species. The ability to metabolize chlorobiphenyl (CB) congeners with vicinal H-atoms only in the ortho- and meta-positions and with one ortho-chlorine substituent generally increased in the order otter < cetaceans (harbor porpoise, common dolphin) < phocid seals (harbor and grey seal), but the metabolism of congeners with vicinal H-atoms in the meta- and para-positions and with two ortho-chlorines increased in the order cetaceans < seals < otter. Both categories of congeners are probably metabolized by different families of cytochrome P450 (1A and 2B) of which levels apparently differed between the cetaceans, the pinnipeds, and the otter. Within-species CB patterns differed in a concentration-dependent manner. The induction of cytochrome P450 enzymes offers the most likely explanation for this phenomenon, but starvation could have a similar effect on occasion.
This review underlines the importance of indoor contamination as a pathway of human exposure to hexabromocyclododecanes (HBCDs), polybrominated diphenyl ethers (PBDEs), and perfluoroalkyl compounds (PFCs). There is ample evidence of substantial contamination of indoor dust with these chemicals and that their concentrations in indoor air exceed substantially those outdoors. Studies examining the relationship between body burden and exposure via indoor dust are inconsistent; while some indicate a link between body burdens and PBDE and HBCD exposure via dust ingestion, others find no correlation. Likewise, while concentrations in indoor dust and human tissues are both highly skewed, this does not necessarily imply causality. Evidence suggests exposure via dust ingestion is higher for toddlers than adults. Research priorities include identifying means of reducing indoor concentrations and indoor monitoring methods that provide the most “biologically-relevant” measures of exposure as well as monitoring a wider range of microenvironment categories. Other gaps include studies to improve understanding of the following: emission rates and mechanisms via which these contaminants migrate from products into indoor air and dust; relationships between indoor exposures and human body burdens; relevant physicochemical properties; the gastrointestinal uptake by humans of these chemicals from indoor dust; and human dust ingestion rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.