Measurements of the jet energy calibration and transverse momentum resolution in CMS are presented, performed with a data sample collected in proton-proton collisions at a centreof-mass energy of 7 TeV, corresponding to an integrated luminosity of 36 pb −1. The transverse momentum balance in dijet and γ/Z+jets events is used to measure the jet energy response in the CMS detector, as well as the transverse momentum resolution. The results are presented for three different methods to reconstruct jets: a calorimeter-based approach, the "Jet-Plus-Track" approach, which improves the measurement of calorimeter jets by exploiting the associated tracks, and the "Particle Flow" approach, which attempts to reconstruct individually each particle in the event, prior to the jet clustering, based on information from all relevant subdetectors. KEYWORDS: Si microstrip and pad detectors; Calorimeter methods; Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc) ARXIV EPRINT: 1107.4277
Results on two-particle angular correlations for charged particles emitted in pPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV are presented. The analysis uses two million collisions collected with the CMS detector at the LHC. The correlations are studied over a broad range of pseudorapidity, eta, and full azimuth, phi, as a function of charged particle multiplicity and particle transverse momentum, p(T). In high-multiplicity events, a long-range (2 < vertical bar Delta eta vertical bar < 4), near-side (Delta phi approximate to 0) structure emerges in the two-particle Delta eta-Delta phi correlation functions. This is the first observation of such correlations in proton-nucleus collisions, resembling the ridge-like correlations seen in high-multiplicity pp collisions at root s = 7 TeV and in AA collisions over a broad range of center-of-mass energies. The correlation strength exhibits a pronounced maximum in the range of p(T) = 1-1.5 GeV/c and an approximately linear increase with charged particle multiplicity for high-multiplicity events. These observations are qualitatively similar to those in pp collisions when selecting the same observed particle multiplicity, while the overall strength of the correlations is significantly larger in pPb collisions. (C) 2012 CERN. Published by Elsevier B.V. All rights reserved
A detailed description is reported of the analysis used by the CMS Collaboration in the search for the standard model Higgs boson in pp collisions at the LHC, which led to the observation of a new boson. The data sample corresponds to integrated luminosities up to 5.1 fb −1 at √ s = 7 TeV, and up to 5.3 fb −1 at √ s = 8 TeV. The results for five Higgs boson decay modes γγ, ZZ, WW, τ τ , and bb, which show a combined local significance of 5 standard deviations near 125 GeV, are reviewed. A fit to the invariant mass of the two high resolution channels, γγ and ZZ → 4 , gives a mass estimate of 125.3 ± 0.4 (stat.) ± 0.5 (syst.) GeV. The measurements are interpreted in the context of the standard model Lagrangian for the scalar Higgs field interacting with fermions and vector bosons. The measured values of the corresponding couplings are compared to the standard model predictions. The hypothesis of custodial symmetry is tested through the measurement of the ratio of the couplings to the W and Z bosons. All the results are consistent, within their uncertainties, with the expectations for a standard model Higgs boson. The CMS collaboration 106 Keywords: Hadron-Hadron Scattering IntroductionThe standard model (SM) [1-3] of particle physics accurately describes many experimental results that probe elementary particles and their interactions up to an energy scale of a few hundred GeV [4]. In the SM, the building blocks of matter, the fermions, are comprised of quarks and leptons. The interactions are mediated through the exchange of force carriers: the photon for electromagnetic interactions, the W and Z bosons for weak interactions, and the gluons for strong interactions. All the elementary particles acquire mass through their interaction with the Higgs field [5][6][7][8][9][10][11][12][13]. This mechanism, called the "Higgs" or "BEH" mechanism [5][6][7][8][9][10], is the first coherent and the simplest solution for giving mass to W and Z bosons, while still preserving the symmetry of the Lagrangian. It is realized by introducing a new complex scalar field into the model. By construction, this field allows the W and Z bosons to acquire mass whilst the photon remains massless, and adds to the model one new scalar particle, the SM Higgs boson (H). The Higgs scalar field and its conjugate can also give mass to the fermions, through Yukawa interactions [11][12][13] The discovery or exclusion of the SM Higgs boson is one of the primary scientific goals of the LHC. Previous direct searches at the LHC were based on data from protonproton collisions corresponding to an integrated luminosity of 5.1 fb −1 collected at a centreof-mass energy of 7 TeV. The CMS experiment excluded at 95% CL masses from 127 to 600 GeV [20]. The ATLAS experiment excluded at 95% CL the ranges 111. . Within the remaining allowed mass region, an excess of events between 2 and 3 standard deviations (σ) near 125 GeV was reported by both experiments. In 2012, the proton-proton centre-of-mass energy was increased to 8 TeV, and by the end of June, an...
Measurements of two- and four-particle angular correlations for charged particles emitted in pPb collisions are presented over a wide range in pseudorapidity and full azimuth. The data, corresponding to an integrated luminosity of approximately 31 inverse nanobarns, were collected during the 2013 LHC pPb run at a nucleon-nucleon center-of-mass energy of 5.02 TeV by the CMS experiment. The results are compared to 2.76 TeV semi-peripheral PbPb collision data, collected during the 2011 PbPb run, covering a similar range of particle multiplicities. The observed correlations are characterized by the near-side (abs(Delta(phi)~0) associated pair yields and the azimuthal anisotropy Fourier harmonics (v[n]). The second-order (v[2]) and third-order (v[3]) anisotropy harmonics are extracted using the two-particle azimuthal correlation technique. A four-particle correlation method is also applied to obtain the value of v[2] and further explore the multi-particle nature of the correlations. Both associated pair yields and anisotropy harmonics are studied as a function of particle multiplicity and transverse momentum. The associated pair yields, the four-particle v[2], and the v[3] become apparent at about the same multiplicity. A remarkable similarity in the v[3] signal as a function of multiplicity is observed between the pPb and PbPb systems. Predictions based on the color glass condensate and hydrodynamic models are compared to the experimental results
Jet production in PbPb collisions at a nucleon-nucleon center-of-mass energy of 2.76 TeV was studied with the Compact Muon Solenoid (CMS) detector at the LHC, using a data sample corresponding to an integrated luminosity of 6.7 μb −1 . Jets are reconstructed using the energy deposited in the CMS calorimeters and studied as a function of collision centrality. With increasing collision centrality, a striking imbalance in dijet transverse momentum is observed, consistent with jet quenching. The observed effect extends from the lower cutoff used in this study (jet p T = 120 GeV/c) up to the statistical limit of the available data sample (jet p T ≈ 210 GeV/c). Correlations of charged particle tracks with jets indicate that the momentum imbalance is accompanied by a softening of the fragmentation pattern of the second most energetic, away-side jet. The dijet momentum balance is recovered when integrating low transverse momentum particles distributed over a wide angular range relative to the direction of the away-side jet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.