Free radicals generated within subcellular compartments damage macromolecules which lead to severe structural changes and functional alterations of cellular organelles. A manifestation of free radical injury to biological membranes is the process of lipid peroxidation, an autooxidative chain reaction in which polyunsaturated fatty acids in the membrane are the substrate. There is considerable evidence that damage to polyunsaturated fatty acids tends to reduce membrane fluidity. However, adequate levels of fluidity are essential for the proper functioning of biological membranes. Thus, there is considerable interest in antioxidant molecules which are able to stabilize membranes because of their protective effects against lipid peroxidation. Melatonin is an indoleamine that modulates a wide variety of endocrine, neural and immune functions. Over the last two decades, intensive research has proven this molecule, as well as its metabolites, to possess substantial antioxidant activity. In addition to their ability to scavenge several reactive oxygen and nitrogen species, melatonin increases the activity of the glutathione redox enzymes, that is, glutathione peroxidase and reductase, as well as other antioxidant enzymes. These beneficial effects of melatonin are more significant because of its small molecular size and its amphipathic behaviour, which facilitates ease of melatonin penetration into every subcellular compartment. In the present work, we review the current information related to the beneficial effects of melatonin in maintaining the fluidity of biological membranes against free radical attack, and further, we discuss its implications for ageing and disease.
PURPOSE The optimal therapeutic sequence of the adjuvant chemotherapy component of preoperative chemoradiotherapy (CRT) for patients with locally advanced rectal cancer is controversial. Induction chemotherapy before preoperative CRT may be associated with better efficacy and compliance. PATIENTS AND METHODS A total of 108 patients with locally advanced rectal cancer were randomly assigned to arm A-preoperative CRT with capecitabine, oxaliplatin, and concurrent radiation followed by surgery and four cycles of postoperative adjuvant capecitabine and oxaliplatin (CAPOX)-or arm B-induction CAPOX followed by CRT and surgery. The primary end point was pathologic complete response rate (pCR). Results On an intention-to-treat basis, the pCR for arms A and B were 13.5% (95% CI, 5.6% to 25.8%) and 14.3% (95% CI, 6.4% to 26.2%), respectively. There were no statistically significant differences in other end points, including downstaging, tumor regression, and R0 resection. Overall, chemotherapy treatment exposure was higher in arm B than in arm A for both oxaliplatin (P < .0001) and capecitabine (P < .0001). During CRT, grades 3 to 4 adverse events were similar in both arms but were significantly higher in arm A during postoperative adjuvant CT than with induction CT in arm B. There were three deaths in each arm during the treatment period. CONCLUSION Compared with postoperative adjuvant CAPOX, induction CAPOX before CRT had similar pCR and complete resection rates. It did achieve more favorable compliance and toxicity profiles. On the basis of these findings, a phase III study to definitively test the induction strategy is warranted.
Deletions affecting codons 557 to 558 are relevant for the prognosis of RFS in GIST patients. This critical genetic alteration should be considered to be a new prognostic stratification variable for randomized trials exploring imatinib mesylate in the adjuvant setting in GIST patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.