We present cosmological results from a combined analysis of galaxy clustering and weak gravitational lensing, using 1321 deg 2 of griz imaging data from the first year of the Dark Energy Survey (DES Y1). We combine three two-point functions: (i) the cosmic shear correlation function of 26 million source galaxies in four redshift bins, (ii) the galaxy angular autocorrelation function of 650,000 luminous red galaxies in five redshift bins, and (iii) the galaxy-shear cross-correlation of luminous red galaxy positions and source galaxy shears. To demonstrate the robustness of these results, we use independent pairs of galaxy shape, photometric-redshift estimation and validation, and likelihood analysis pipelines. To prevent confirmation bias, the bulk of the analysis was carried out while "blind" to the true results; we describe an extensive suite of systematics checks performed and passed during this blinded phase. The data are modeled in flat ΛCDM and wCDM cosmologies, marginalizing over 20 nuisance parameters, varying 6 (for ΛCDM) or 7 (for wCDM) cosmological parameters including the neutrino mass density and including the 457 × 457 element analytic covariance matrix. We find consistent cosmological results from these three two-point functions and from their combination obtain S 8 ≡ σ 8 ðΩ m =0.3Þ 0.5 ¼ 0.773 þ0.026 −0.020 and Ω m ¼ 0.267 þ0.030 −0.017 for ΛCDM; for wCDM, we find S 8 ¼ 0.782 þ0.036 −0.024 , Ω m ¼ 0.284 þ0.033 −0.030 , and w ¼ −0.82 þ0.21 −0.20 at 68% C.L. The precision of these DES Y1 constraints rivals that from the Planck cosmic microwave background measurements, allowing a comparison of structure in the very early and late Universe on equal terms. Although the DES Y1 best-fit values for S 8 and Ω m are lower than the central values from Planck for both ΛCDM and wCDM, the Bayes factor indicates that the DES Y1 and Planck data sets are consistent with each other in the context of ΛCDM. Combining DES Y1 with Planck, baryonic acoustic oscillation measurements from SDSS, 6dF, and BOSS and type Ia supernovae from the Joint Lightcurve Analysis data set, we derive very tight constraints on cosmological parameters: S 8 ¼ 0.802 AE 0.012 and Ω m ¼ 0.298 AE 0.007 in ΛCDM and w ¼ −1.00 þ0.05 −0.04 in wCDM. Upcoming Dark Energy Survey analyses will provide more stringent tests of the ΛCDM model and extensions such as a time-varying equation of state of dark energy or modified gravity.
This work and its companion paper, Amon et al. [Phys. Rev. D 105, 023514 (2022)], present cosmic shear measurements and cosmological constraints from over 100 million source galaxies in the Dark Energy Survey (DES) Year 3 data. We constrain the lensing amplitude parameter S 8 ≡ σ 8 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Ω m =0.3 p at the 3% level in ΛCDM: S 8 ¼ 0.759 þ0.025 −0.023 (68% CL). Our constraint is at the 2% level when using angular scale cuts that are optimized for the ΛCDM analysis: S 8 ¼ 0.772 þ0.018 −0.017 (68% CL). With cosmic shear alone, we †
This work, together with its companion paper, Secco, Samuroff et al. [Phys. Rev. D 105, 023515 (2022)], present the Dark Energy Survey Year 3 cosmic-shear measurements and cosmological constraints based on an analysis of over 100 million source galaxies. With the data spanning 4143 deg 2 on the sky, divided into four redshift bins, we produce a measurement with a signal-to-noise of 40. We conduct a blind analysis in the context of the Lambda-Cold Dark Matter (ΛCDM) model and find a 3% constraint of the clustering amplitude, S 8 ≡ σ 8 ðΩ m =0.3Þ 0.5 ¼ 0.759 þ0.025 −0.023 . A ΛCDM-Optimized analysis, which safely includes smaller scale information, yields a 2% precision measurement of S 8 ¼ 0.772 þ0.018 −0.017 that is consistent with the fiducial case. The two low-redshift measurements are statistically consistent with the Planck Cosmic Microwave Background result, however, both recovered S 8 values are lower than the highredshift prediction by 2.3σ and 2.1σ (p-values of 0.02 and 0.05), respectively. The measurements are shown to be internally consistent across redshift bins, angular scales and correlation functions. The analysis is demonstrated to be robust to calibration systematics, with the S 8 posterior consistent when varying the choice of redshift calibration sample, the modeling of redshift uncertainty and methodology. Similarly, we find that the corrections included to account for the blending of galaxies shifts our best-fit S 8 by 0.5σ without incurring a substantial increase in uncertainty. We examine the limiting factors for the precision of the cosmological constraints and find observational systematics to be subdominant to the modeling of astrophysics. Specifically, we identify the uncertainties in modeling baryonic effects and intrinsic alignments as the limiting systematics.
Previously we used the Nearby Supernova Factory sample to show that SNe Ia having locally star-forming environments are dimmer than SNe Ia having locally passive environments. Here we use the Constitution sample together with host galaxy data from GALEX to independently confirm that result. The effect is seen using both the SALT2 and MLCS2k2 lightcurve fitting and standardization methods, with brightness differences of 0.094 ± 0.037 mag for SALT2 and 0.155 ± 0.041 mag for MLCS2k2 with R V = 2.5. When combined with our previous measurement the effect is 0.094 ± 0.025 mag for SALT2. If the ratio of these local SN Ia environments changes with redshift or sample selection, this can lead to a bias in cosmological measurements. We explore this -2issue further, using as an example the direct measurement of H 0 . GALEX observations show that the SNe Ia having standardized absolute magnitudes calibrated via the Cepheid period-luminosity relation using HST originate in predominately star-forming environments, whereas only ∼ 50% of the Hubble-flow comparison sample have locally star-forming environments. As a consequence, the H 0 measurement using SNe Ia is currently overestimated. Correcting for this bias, we find a value of H corr 0 = 70.6 ± 2.6 km s −1 Mpc −1 when using the LMC distance, Milky Way parallaxes and the NGC 4258 megamaser as the Cepheid zeropoint, and 68.8 ± 3.3 km s −1 Mpc −1 when only using NGC 4258. Our correction brings the direct measurement of H 0 within ∼ 1 σ of recent indirect measurements based on the CMB power spectrum.B SF = 0.094 ± 0.031 mag 1 . Since the underlying connection is with star formation rather than the Hα emission itself, we refer to this effect as the star-formation bias, or SF bias for short.R13 connected the SF bias to the host-mass step by noting that few of the Ia in the SNfactory sample occur in low-mass hosts, leading to a shift in mean brightness with host mass that is driven by the changing fraction of star formation. However, this also implies that simply correcting for the host-mass step will not
We constrain the matter density Ωm and the amplitude of density fluctuations σ8 within the ΛCDM cosmological model with shear peak statistics and angular convergence power spectra using mass maps constructed from the first three years of data of the Dark Energy Survey (DES Y3). We use tomographic shear peak statistics, including cross-peaks: peak counts calculated on maps created by taking a harmonic space product of the convergence of two tomographic redshift bins. Our analysis follows a forward-modelling scheme to create a likelihood of these statistics using N-body simulations, using a Gaussian process emulator. We take into account the uncertainty from the remaining, largely unconstrained ΛCDM parameters (Ωb, ns and h). We include the following lensing systematics: multiplicative shear bias, photometric redshift uncertainty, and galaxy intrinsic alignment. Stringent scale cuts are applied to avoid biases from unmodelled baryonic physics. We find that the additional non-Gaussian information leads to a tightening of the constraints on the structure growth parameter yielding $S_8~\equiv ~\sigma _8\sqrt{\Omega _{\mathrm{m}}/0.3}~=~0.797_{-0.013}^{+0.015}$ (68 per cent confidence limits), with a precision of 1.8 per cent, an improvement of 38 per cent compared to the angular power spectra only case. The results obtained with the angular power spectra and peak counts are found to be in agreement with each other and no significant difference in S8 is recorded. We find a mild tension of 1.5 σ between our study and the results from Planck 2018, with our analysis yielding a lower S8. Furthermore, we observe that the combination of angular power spectra and tomographic peak counts breaks the degeneracy between galaxy intrinsic alignment AIA and S8, improving cosmological constraints. We run a suite of tests concluding that our results are robust and consistent with the results from other studies using DES Y3 data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.