We describe a versatile bottom-up approach to covalently and rapidly graft hydroxyl terminated poly (2-vinyl pyridine) (P2VP-OH) polymers in 60 seconds that can subsequently be used to fabricate high quality TiO2 films on silicon substrates. A facile strategy based upon room temperature titanium vapor phase infiltration of the grafted P2VP-OH polymer brushes produces TiO2 nanofilms of 2-4 nm thickness. In order to fabricate coherent inorganic films with precise thickness control, it is critical to generate a high-quality polymer brush film i.e. a complete monolayer. Definition of precise and regular polymer monolayers is straightforwardly achieved for polymers which are weakly interacting with one another and the substrate (apart from the reactive terminal group used for grafting). However this is much more challenging for reactive systems. Crucial parameters are explored including molecular weight and solution concentration for grafting dense P2VP-OH monolayers from the liquid phase with very high coverage and uniformity across wafer scale areas. Additionally, we compare the P2VP-OH polymer system with another reactive polymer PMMA-OH and a relatively non-reactive polymer PS-OH, the latter we prove to be extremely effective for surface blocking and deactivation. Our methodology provides new insight into the grafting of polymer brushes and their ability to form dense TiO2 films. We believe the results described herein are important for further expanding the use of reactive and unreactive polymers for fields including area selective deposition, solar cell absorber layers and antimicrobial surface coatings.
Recycling metallic powders used in the additive manufacturing (AM) process is essential for reducing the process cost, manufacturing time, energy consumption, and metallic waste. In this paper, the focus is on pore formation in recycled powder particles of stainless steel 316L during the selective laser melting process. We have introduced the concept of optimizing the powder bed's printing area in order to see the extent of the affected powders during the 3D-printing process. X-ray Computed Tomography (XCT) is used to characterize the pores inside the particles. The results from image processing of the tomography (rendered in 3D format) indicate a broader pore size distribution and a higher pore density in recycled powders compared to their virgin counterparts. To elucidate on this, the Electron Dispersion spectroscopy (EDX) analysis and Synchrotron-based Hard X-ray Photoelectron Spectroscopy (HAXPES) were performed to reveal the chemical composition distribution across the pore area and bulk of the recycled powder particles. Higher concentrations of Fe, Cr, and Ni were recorded on the interior wall of the pore in recycled particles and higher Mn, S and Si concentrations were recorded in the outer layer around the pore area and on the surface of the recycled particle. The pore formation in recycled powder is attributed to out-diffusion of Mn, S and Si to the outer surface as a result of the incident laser heat during the AM process due to higher electron affinity of such metallic elements to oxygenation. HAXPES analysis shows a higher MnO concentration around the pore area which impedes the in-diffusion of other elements into the bulk and thereby helps to creates a void. The inside wall of the pore area (dendrites), has a higher concentration of Fe and Cr oxide. We believe the higher pore density in recycled powders is due, at least in part to composition redistribution, promoted by laser heat during the AM process. Nanoindentation analyses on both virgin and recycled powder particles shows a lower hardness and higher effective modulus in the recycled powder particles attributed to the higher porosity in recycled powders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.