Chronic exposure to nicotine elicits upregulation of high-affinity nicotinic receptors in the smoker's brain. To address the molecular mechanism of upregulation, we transfected HEK293 cells with human alpha4beta2 receptors and traced the subunits throughout their intracellular biosynthesis, using metabolic labeling and immunoprecipitation techniques. We show that high-mannose glycosylated subunits mature and assemble into pentamers in the endoplasmic reticulum and that only pentameric receptors reach the cell surface following carbohydrate processing. Nicotine is shown to act inside the cell and to increase the amount of beta subunits immunoprecipitated by the conformation-dependent mAb290, indicating that nicotine enhances a critical step in the intracellular maturation of these receptors. This effect, which also takes place at concentrations of nicotine found in the blood of smokers upon expression of alpha4beta2 in SH-SY5Y neuroblastoma cells, may play a crucial role in nicotine addiction and possibly implement a model of neural plasticity.
Ethanol alters nerve signalling by interacting with proteins in the central nervous system, particularly pentameric ligand-gated ion channels. A recent series of mutagenesis experiments on Gloeobacter violaceus ligand-gated ion channel, a prokaryotic member of this family, identified a single-site variant that is potentiated by pharmacologically relevant concentrations of ethanol. Here we determine crystal structures of the ethanol-sensitized variant in the absence and presence of ethanol and related modulators, which bind in a transmembrane cavity between channel subunits and may stabilize the open form of the channel. Structural and mutagenesis studies defined overlapping mechanisms of potentiation by alcohols and anaesthetics via the inter-subunit cavity. Furthermore, homology modelling show this cavity to be conserved in human ethanol-sensitive glycine and GABA(A) receptors, and to involve residues previously shown to influence alcohol and anaesthetic action on these proteins. These results suggest a common structural basis for ethanol potentiation of an important class of targets for neurological actions of ethanol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.