Demonstrating improved confinement of energetic ions is one of the key goals of the Wendelstein 7-X (W7-X) stellarator. In the past campaigns, measuring confined fast ions has proven to be challenging. Future deuterium campaigns would open up the option of using fusion-produced neutrons to indirectly observe confined fast ions. There are two neutron populations: 2.45 MeV neutrons from thermonuclear and beam-target fusion, and 14.1 MeV neutrons from DT reactions between tritium fusion products and bulk deuterium. The 14.1 MeV neutron signal can be measured using a scintillating fiber neutron detector, whereas the overall neutron rate is monitored by common radiation safety detectors, for instance fission chambers. The fusion rates are dependent on the slowing-down distribution of the deuterium and tritium ions, which in turn depend on the magnetic configuration via fast ion orbits. In this work, we investigate the effect of magnetic configuration on neutron production rates in W7-X. The neutral beam injection, beam and triton slowing-down distributions, and the fusion reactivity are simulated with the ASCOT suite of codes. The results indicate that the magnetic configuration has only a small effect on the production of 2.45 MeV neutrons from DD fusion and, particularly, on the 14.1 MeV neutron production rates. Despite triton losses of up to 50 %, the amount of 14.1 MeV neutrons produced might be sufficient for a time-resolved detection using a scintillating fiber detector, although only in high-performance discharges.
After completing the main construction phase of Wendelstein 7-X (W7-X) and successfully commissioning the device, first plasma operation started at the end of 2015. Integral commissioning of plasma start-up and operation using electron cyclotron resonance heating (ECRH) and an extensive set of plasma diagnostics have been completed, allowing initial physics studies during the first operational campaign. Both in helium and hydrogen, plasma breakdown was easily achieved. Gaining experience with plasma vessel conditioning, discharge lengths could be extended gradually. Eventually, discharges lasted up to 6 s, reaching an injected energy of 4 MJ, which is twice the limit originally agreed for the limiter configuration employed during the first operational campaign. At power levels of 4 MW central electron densities reached 3 × 1019 m−3, central electron temperatures reached values of 7 keV and ion temperatures reached just above 2 keV. Important physics studies during this first operational phase include a first assessment of power balance and energy confinement, ECRH power deposition experiments, 2nd harmonic O-mode ECRH using multi-pass absorption, and current drive experiments using electron cyclotron current drive. As in many plasma discharges the electron temperature exceeds the ion temperature significantly, these plasmas are governed by core electron root confinement showing a strong positive electric field in the plasma centre.
The first physics operation phase on the stellarator experiment Wendelstein 7-X was successfully completed in March 2016 after about 10 weeks of operation. Experiments in this phase were conducted with five graphite limiters as the primary plasma-facing components. Overall, the results were beyond the expectations published shortly before the start of operation [Sunn Pedersen et al., Nucl. Fusion 55, 126001 (2015)] both with respect to parameters reached and with respect to physics themes addressed. We report here on some of the most important plasma experiments that were conducted. The importance of electric fields on global confinement will be discussed, and the obtained results will be compared and contrasted with results from other devices, quantified in terms of the fusion triple product. Expected values for the triple product in future operation phases will also be described and put into a broader fusion perspective.
The next step in the Wendelstein stellarator line is the large superconducting device Wendelstein 7-X, currently under construction in Greifswald, Germany. Steady-state operation is an intrinsic feature of stellarators, and one key element of the Wendelstein 7-X mission is to demonstrate steady-state operation under plasma conditions relevant for a fusion power plant. Steady-state operation of a fusion device, on the one hand, requires the implementation of special technologies, giving rise to technical challenges during the design, fabrication and assembly of such a device. On the other hand, also the physics development of steady-state operation at high plasma performance poses a challenge and careful preparation. The electron cyclotron resonance heating system, diagnostics, experiment control and data acquisition are prepared for plasma operation lasting 30 min. This requires many new technological approaches for plasma heating and diagnostics as well as new concepts for experiment control and data acquisition.
Interferometry as one of the most common core fusion diagnostics has traditionally suffered from incomplete vibration compensation. Dispersion interferometry promises a more complete compensation of vibrations. For this reason it is being employed in an increasing number of experiments. However, thus far none of them have shown reliable real-time low-latency processing of dispersion interferometry data. Nonetheless this is a necessity for most machines when trying to do density feedback control, most notably in long discharges like the ones planned at the W7-X stellarator and ITER. In this paper we report the development of a new phase extraction method specifically developed for real-time evaluation using field programmable gate arrays (FPGA). It has been shown to operate reliably during the operation phase OP1.2a at W7-X and is now routinely being used by the W7-X density feedback system up to very high densities above 1.4×1020 m-2 without showing 2π-wraps and exhibits increased wrap stability by double-data-rate sampling. A rigorous error analysis has been conducted shedding insights into the signal composition of a dispersion interferometer have been gained. This includes the environmental effects, most notably air humidity, on the phase measurement and the correction thereof.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.