Context.A new challenging adaptive optics (AO) system, called multi-object adaptive optics (MOAO), has been successfully demonstrated on-sky for the first time at the 4.2 m William Herschel Telescope, Canary Islands, Spain, at the end of September 2010. Aims. This system, called CANARY, is aimed at demonstrating the feasibility of MOAO in preparation of a future multi-object near infra-red (IR) integral field unit spectrograph to equip extremely large telescopes for analysing the morphology and dynamics of high-z galaxies.
The definition and optimization studies for the Gaia satellite spectrograph, the ‘radial velocity spectrometer’ (RVS), converged in late 2002 with the adoption of the instrument baseline. This paper reviews the characteristics of the selected configuration and presents its expected performance. The RVS is a 2.0 × 1.6 degree integral field spectrograph, dispersing the light of all sources entering its field of view with a resolving power R=λ/Δλ= 11 500 over the wavelength range [848, 874] nm. The RVS will continuously and repeatedly scan the sky during the 5‐yr Gaia mission. On average, each source will be observed 102 times over this period. The RVS will collect the spectra of about 100–150 million stars up to magnitude V≃ 17–18. At the end of the mission, the RVS will provide radial velocities with precisions of ∼2 km s−1 at V= 15 and ∼15–20 km s−1 at V= 17, for a solar‐metallicity G5 dwarf. The RVS will also provide rotational velocities, with precisions (at the end of the mission) for late‐type stars of σvsin i≃ 5 km s−1 at V≃ 15 as well as atmospheric parameters up to V≃ 14–15. The individual abundances of elements such as silicon and magnesium, vital for the understanding of Galactic evolution, will be obtained up to V≃ 12–13. Finally, the presence of the 862.0‐nm diffuse interstellar band (DIB) in the RVS wavelength range will make it possible to derive the three‐dimensional structure of the interstellar reddening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.