The first prototype of the hybrid CPV-T ANU-Chromasun micro-concentrator has been installed at The Australian National University, Canberra, Australia. The results of electrical and thermal performance of the micro-concentrator system, including instantaneous and full-day monitoring, show that the combined efficiency of the system can exceed 70%. Over the span of a day, the average electrical efficiency was 8% and the average thermal efficiency was 50%.
A close-packed heliostat field of more than 800 m2 reflector area has been installed by Solar Heat and Power for the CSIRO solar tower at the Energy Centre in Newcastle, Australia. The heliostat field has been designed with significantly greater field packing density than normally associated with heliostat fields. It can be shown that even though a heliostat field with a high ground coverage exhibits more blocking and shading, a higher annual performance can be achieved up to a certain point. The optimum ground coverage calculated for the CSIRO solar tower configuration is in the range of 53%. Other heliostat field designs usually have ground coverage below 30%. The annual optical performance of the CSIRO field per square meters of reflector is about 9% higher than a radial stagger field of 30% ground coverage for a research tower, which was optimized to have the highest performance for the time frame from 10 a.m. until 2 p.m.
A unique, linear, low-concentration, hybrid 'micro concentrator' (MCT) system concept has been developed specifically for urban rooftop environments. The light weight, low-profile form factor satisfies aesthetic demands for general rooftop solar technologies, and is a marked departure from conventional linear concentrator systems. Valuable thermal energy, normally of nuisance value only, and usually wasted by conventional CPV, is extracted via a heat transfer fluid. The recovered thermal energy can be used for applications ranging from domestic hot water through to space heating, ventilation, and air conditioning (HVAC), and process heat. The system can be modularly configured for hybrid concentrating PV-Thermal (CPV-T) or thermal-only operation to meet specific customer demands. At a 20x concentration ratio, system output of 500 Wpe and 2 kWpt is expected, for a combined system efficiency of up to 75%. The MCT is constructed from mature, proven technologies and industry-standard processes. An installed system cost of less than US$2IWpe is targeted, and commercial availability is expected to commence in 20 11.
As an alternative to conventional tracking solar thermal trough systems, one may use line focus Fresnel reflector systems. In a conventional Fresnel reflector design, each field of reflectors is directed to a single tower. However, efficient systems of very high ground utilisation can be setup if a field of reflectors uses multiple receivers on different towers. This paper describes a line focus system, called the compact linear fresnel reflector system and a project to produce an initial 95 MWth solar array. The array will be used as a retrofit preheater for a coal fired generating plant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.