A general method is proposed to produce oriented and highly crystalline conducting polymer layers. It combines the controlled orientation/crystallization of polymer films by high-temperature rubbing with a soft-doping method based on spin-coating a solution of dopants in an orthogonal solvent. Doping rubbed films of regioregular poly(3-alkylthiophene)s and poly(2,5-bis(3dodecylthiophen-2-yl)thieno[3,2-b]thiophene) with 2,3,5,6-tetrafluoro-7,7,8,8tetracyanoquinodimethane (F 4 TCNQ) yields highly oriented conducting polymer films that display polarized UV-visible-near-infrared (NIR) absorption, anisotropy in charge transport, and thermoelectric properties. Transmission electron microscopy and polarized UV-vis-NIR spectroscopy help understand and clarify the structure of the films and the doping mechanism. F 4 TCNQ − anions are incorporated into the layers of side chains and orient with their long molecular axis perpendicular to the polymer chains. The ordering of dopant molecules depends closely on the length and packing of the alkyl side chains. Increasing the dopant concentration results in a continuous variation of unit cell parameters of the doped phase. The high orientation results in anisotropic charge conductivity (σ) and thermoelectric properties that are both enhanced in the direction of the polymer chains (σ = 22 ± 5 S cm −1 and S = 60 ± 2 µV K −1 ). The method of fabrication of such highly oriented conducting polymer films is versatile and is applicable to a large palette of semiconducting polymers.
Green-absorbing dipyrromethene dyes engineered from bis-vinyl-thienyl modules are planar molecules, exhibiting strong absorption in the 713-724 nm range and displaying comparable electron and hole mobilities in thin films (maximum value 1 × 10(-3) cm(2)/(V·s)). Bulk heterojunction solar cells assembled with these dyes and a fullerene derivative (PC(61)BM) at a low ratio give a power conversion efficiency as high as 4.7%, with short-circuit current values of 14.2 mA/cm(2), open-circuit voltage of 0.7 V, and a broad external quantum efficiency ranging from 350 to 920 nm with a maximum value of 60%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.