A novel experimental setup has been implemented to provide accurate electron scattering cross sections from molecules at low and intermediate impact energies (1-300 eV) by measuring the attenuation of a magnetically confined linear electron beam from a molecular target. High-resolution electron energy is achieved through confinement in a magnetic gas trap where electrons are cooled by successive collisions with N. Additionally, we developed and present a method to correct systematic errors arising from energy and angular resolution limitations. The accuracy of the entire measurement procedure is validated by comparing the N total scattering cross section in the considered energy range with benchmark values available in the literature.
We report absolute differential cross sections (DCSs) for elastic electron scattering from GeF4. The incident electron energy range was 3–200 eV, while the scattered electron angular range was typically 15°–150°. In addition, corresponding independent atom model (IAM) calculations, within the screened additivity rule (SCAR) formulation, were also performed. Those results, particularly for electron energies above about 10 eV, were found to be in good quantitative agreement with the present experimental data. Furthermore, we compare our GeF4 elastic DCSs to similar data for scattering from CF4 and SiF4. All these three species possess Td symmetry, and at each specific energy considered above about 50 eV their DCSs are observed to be almost identical. These indistinguishable features suggest that high-energy elastic scattering from these targets is virtually dominated by the atomic-F species of the molecules. Finally, estimates for the measured GeF4 elastic integral cross sections are derived and compared to our IAM-SCAR computations and with independent total cross section values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.