A quasiperiodic Er oscillation at a frequency of <4 kHz, much lower than the geodesic-acoustic-mode frequency, with a modulation in edge turbulence preceding and following the low-to-high (L-H) confinement mode transition, has been observed for the first time in the EAST tokamak, using two toroidally separated reciprocating probes. Just prior to the L-H transition, the Er oscillation often evolves into intermittent negative Er spikes. The low-frequency Er oscillation, as well as the Er spikes, is strongly correlated with the turbulence-driven Reynolds stress, thus providing first evidence of the role of the zonal flows in the L-H transition at marginal input power. These new findings not only shed light on the underlying physics mechanism for the L-H transition, but also have significant implications for ITER operations close to the L-H transition threshold power.
A new fast reciprocating probe system (FRPS) has been built and installed on the outer midplane of the EAST tokamak to investigate the profiles of the boundary plasma parameters such as electron density and temperature. The system consists of a two-stage motion drive mechanism: slow motion and fast motion. The fast motion is powered by a servo motor, which drives the probe horizontally up to 50 cm to scan the edge region of the EAST tokamak. The maximum velocity achieved is 2 m/s. High velocity and flexible control of the fast motion are the remarkable features of this FRPS. A specially designed connector installed at the front end of the probe shaft makes it easy to install or replace the probe head on FRPS. During the latest experimental campaign in the spring of 2010, a probe head with seven tips, including two tips for a Mach probe, has been used. An example is given for simultaneous profile measurements of the plasma temperature, plasma density, and the plasma flow velocity.
The first high confinement H-mode plasma has been obtained in the Experimental Advanced Superconducting Tokamak (EAST) with about 1 MW lower hybrid current drive after wall conditioning by lithium evaporation and real-time injection of Li powder. Following the L–H transition, a small-amplitude, low-frequency oscillation, termed a limit-cycle state, appears at the edge during the quiescent phase with good energy and particle confinement. Detailed measurements by edge Langmuir probes show modulation interaction and strong three-wave coupling between the low-frequency oscillations and high-frequency-broadband (80–500 kHz) turbulences that emerge after the L–H transition or in the inter-ELM phase. The potential fluctuations at the plasma edge are correlated with the limit-cycle oscillations, and the fluctuations in the floating potential signals at different toroidal, poloidal and radial locations are strongly correlated with each other, with nearly no phase differences poloidally and toroidally, and finite phase difference radially, thus providing strong evidence for zonal flows. The growth, saturation and disappearance of the zonal flows are strongly correlated with those of the high-frequency turbulence. And the measurements demonstrate that the energy gain of zonal flows is of the same order as the energy loss of turbulence. This strongly suggests the interactions between zonal flows and high-frequency turbulences at the pedestal during the limit-cycle state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.