A measurement of the ratio of the branching fractions of the B(+) → K(+)μ(+)μ(-) and B(+) → K(+)e(+)e(-) decays is presented using proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb(-1), recorded with the LHCb experiment at center-of-mass energies of 7 and 8 TeV. The value of the ratio of branching fractions for the dilepton invariant mass squared range 1 < q(2) < 6 GeV(2)/c(4) is measured to be 0.745(-0.074)(+0.090)(stat) ± 0.036(syst). This value is the most precise measurement of the ratio of branching fractions to date and is compatible with the standard model prediction within 2.6 standard deviations.
The LHCb detector is a forward spectrometer at the Large Hadron Collider (LHC) at CERN. The experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. In this paper the performance of the various LHCb sub-detectors and the trigger system are described, using data taken from 2010 to 2012. It is shown that the design criteria of the experiment have been met. The excellent performance of the detector has allowed the LHCb collaboration to publish a wide range of physics results, demonstrating LHCb's unique role, both as a heavy flavour experiment and as a general purpose detector in the forward region.
The isospin asymmetries of B → Kµ + µ − and B → K * µ + µ − decays and the partial branching fractions of the B 0 → K 0 µ + µ − , B + → K + µ + µ − and B + → K * + µ + µ − decays are measured as functions of the dimuon mass squared, q 2 . The data used correspond to an integrated luminosity of 3 fb −1 from proton-proton collisions collected with the LHCb detector at centre-of-mass energies of 7 TeV and 8 TeV in 2011 and 2012, respectively. The isospin asymmetries are both consistent with the Standard Model expectations. The three measured branching fractions favour lower values than their respective theoretical predictions, however they are all individually consistent with the Standard Model.
decay, with a statistical significance exceeding six standard deviations, and the best measurement so far of its branching fraction. Furthermore, we obtained evidence for the B 0 ? m 1 m 2 decay with a statistical significance of three standard deviations. Both measurements are statistically compatible with standard model predictions and allow stringent constraints to be placed on theories beyond the standard model. The LHC experiments will resume taking data in 2015, recording proton-proton collisions at a centre-of-mass energy of 13 teraelectronvolts, which will approximately double the production rates of B 0 s and B 0 mesons and lead to further improvements in the precision of these crucial tests of the standard model.Experimental particle physicists have been testing the predictions of the standard model of particle physics (SM) with increasing precision since the 1970s. Theoretical developments have kept pace by improving the accuracy of the SM predictions as the experimental results gained in precision. In the course of the past few decades, the SM has passed critical tests derived from experiment, but it does not address some profound questions about the nature of the Universe. For example, the existence of dark matter, which has been confirmed by cosmological data 3 , is not accommodated by the SM. It also fails to explain the origin of the asymmetry between matter and antimatter, which after the Big Bang led to the survival of the tiny amount of matter currently present in the Universe Fig. 1c, is forbidden at the elementary level because the Z 0 cannot couple directly to quarks of different flavours, that is, there are no direct 'flavour changing neutral currents'. However, it is possible to respect this rule and still have this decay occur through 'higher order' transitions such as those shown in Fig. 1d and e. These are highly suppressed because each additional interaction vertex reduces their probability of occurring significantly. They are also helicity and CKM suppressed. Consequently, the branching fraction for the B 0 s ?m z m { decay is expected to be very small compared to the dominant b antiquark to c antiquark transitions. The corresponding decay of the B 0 meson, where a d quark replaces the s quark, is even more CKM suppressed because it requires a jump across two quark generations rather than just one.The branching fractions, B, of these two decays, accounting for higher-order electromagnetic and strong interaction effects, and using lattice quantum chromodynamics to compute the B 8,9 , such as in the diagrams shown in Fig. 1f and g, that can considerably modify the SM branching fractions. In particular, theories with additional Higgs bosons 10,11 predict possible enhancements to the branching fractions. A significant deviation of either of the two branching fraction measurements from the SM predictions would give insight on how the SM should be extended. Alternatively, a measurement compatible with the SM could provide strong constraints on BSM theories. . Both CMS and LHCb later ...
Resonant structures in B^{0}→ψ^{'}π^{-}K^{+} decays are analyzed by performing a four-dimensional fit of the decay amplitude, using pp collision data corresponding to 3 fb^{-1} collected with the LHCb detector. The data cannot be described with K^{+}π^{-} resonances alone, which is confirmed with a model-independent approach. A highly significant Z(4430)^{-}→ψ^{'}π^{-} component is required, thus confirming the existence of this state. The observed evolution of the Z(4430)^{-} amplitude with the ψ^{'}π^{-} mass establishes the resonant nature of this particle. The mass and width measurements are substantially improved. The spin parity is determined unambiguously to be 1^{+}.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.