We report on the direct observation of an oscillating atomic current in a one-dimensional array of Josephson junctions realized with an atomic Bose-Einstein condensate. The array is created by a laser standing wave, with the condensates trapped in the valleys of the periodic potential and weakly coupled by the interwell barriers. The coherence of multiple tunneling between adjacent wells is continuously probed by atomic interference. The square of the small-amplitude oscillation frequency is proportional to the microscopic tunneling rate of each condensate through the barriers and provides a direct measurement of the Josephson critical current as a function of the intermediate barrier heights. Our superfluid array may allow investigation of phenomena so far inaccessible to superconducting Josephson junctions and lays a bridge between the condensate dynamics and the physics of discrete nonlinear media.
We investigate the properties of a coherent array containing about 200 Bose-Einstein condensates produced in a far detuned 1D optical lattice. The density profile of the gas, imaged after releasing the trap, provides information about the coherence of the ground-state wavefunction. The measured atomic distribution is characterized by interference peaks. The time evolution of the peaks, their relative population as well as the radial size of the expanding cloud are in good agreement with the predictions of theory. The 2D nature of the trapped condensates and the conditions required to observe the effects of coherence are also discussed.
Abstract. We report the experimental observation of the disruption of the superfluid atomic current flowing through an array of weakly linked BoseEinstein condensates. The condensates are trapped in an optical lattice superimposed on a harmonic magnetic potential. The dynamical response of the system to a change of the magnetic potential minimum along the optical lattice axis goes from a coherent oscillation (superfluid regime) to a localization of the condensates in the harmonic trap ('classical' insulator regime). The localization occurs when the initial displacement is larger than a critical value or, equivalently, when the velocity of the wavepacket's centre of mass is larger than a critical velocity dependent on the rate of tunnelling between adjacent sites. Atomic Bose-Einstein condensates have been either loaded or produced in periodic potentials opening up the possibility of investigating new phenomena tuning the degree of coherence in the system. Experiments have explored regimes ranging from the coherent matter wave emission from a condensate loaded on a vertical standing wave [1], to the observation of number squeezed states [2], the demonstration of a one-dimensional Josephson junction array with a linear chain of condensates produced in an optical lattice [3], and the recent observation of a quantum phase transition in a condensate loaded in a 3D optical lattice [4]. The dynamical behaviour of coherent matter waves in periodic potentials has also been the subject of extensive 4
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.