Aflatoxin is considered a “hidden poison” due to its slow and adverse effect on various biological pathways in humans, particularly among children, in whom it leads to delayed development, stunted growth, liver damage, and liver cancer. Unfortunately, the unpredictable behavior of the fungus as well as climatic conditions pose serious challenges in precise phenotyping, genetic prediction and genetic improvement, leaving the complete onus of preventing aflatoxin contamination in crops on post-harvest management. Equipping popular crop varieties with genetic resistance to aflatoxin is key to effective lowering of infection in farmer’s fields. A combination of genetic resistance for in vitro seed colonization (IVSC), pre-harvest aflatoxin contamination (PAC) and aflatoxin production together with pre- and post-harvest management may provide a sustainable solution to aflatoxin contamination. In this context, modern “omics” approaches, including next-generation genomics technologies, can provide improved and decisive information and genetic solutions. Preventing contamination will not only drastically boost the consumption and trade of the crops and products across nations/regions, but more importantly, stave off deleterious health problems among consumers across the globe.
Groundnut, a nutrient-rich food legume, is cultivated world over. It is valued for its good quality cooking oil, energy and protein rich food, and nutrient-rich fodder. Globally, groundnut improvement programs have developed varieties to meet the preferences of farmers, traders, processors, and consumers. Enhanced yield, tolerance to biotic and abiotic stresses and quality parameters have been the target traits. Spurt in genetic information of groundnut was facilitated by development of molecular markers, genetic, and physical maps, generation of expressed sequence tags (EST), discovery of genes, and identification of quantitative trait loci (QTL) for some important biotic and abiotic stresses and quality traits. The first groundnut variety developed using marker assisted breeding (MAB) was registered in 2003. Since then, USA, China, Japan, and India have begun to use genomic tools in routine groundnut improvement programs. Introgression lines that combine foliar fungal disease resistance and early maturity were developed using MAB. Establishment of marker-trait associations (MTA) paved way to integrate genomic tools in groundnut breeding for accelerated genetic gain. Genomic Selection (GS) tools are employed to improve drought tolerance and pod yield, governed by several minor effect QTLs. Draft genome sequence and low cost genotyping tools such as genotyping by sequencing (GBS) are expected to accelerate use of genomic tools to enhance genetic gains for target traits in groundnut.
The staple crops, maize, sorghum, bambara nut, groundnut, and sunflower common in semi-arid agro-pastoral farming systems of central Tanzania are prone to aflatoxin contamination. Consumption of such crop produce, contaminated with high levels of aflatoxin B1 (AFB1), affects growth and health. In this paper, aflatoxin contamination in freshly harvested and stored crop produce from central Tanzania was examined, including the efficacy of aflatoxin mitigation technologies on grain/kernal quality. A total of 312 farmers were recruited, trained on aflatoxin mitigation technologies, and allowed to deploy the technologies for 2 years. After 2 years, 188 of the 312 farmers were tracked to determine whether they had adopted and complied with the mitigation practices. Aflatoxigenic Aspergillus flavus and aflatoxin B1 contamination in freshly harvested and stored grains/kernels were assessed. A. flavus frequency and aflatoxin production by fungi were assayed by examining culture characteristics and thin-layer chromatography respectively. AFB1 was assayed by enzyme-linked immunosorbent assay. The average aflatoxin contamination in freshly harvested samples was 18.8 μg/kg, which is above the acceptable standard of 10 μg/kg. Contamination increased during storage to an average of 57.2 μg/kg, indicating a high exposure risk. Grains and oilseeds from maize, sorghum, and sunflower produced in aboveground reproductive structures had relatively low aflatoxin contamination compared to those produced in geocarpic structures of groundnut and bambara nut. Farmers who adopted recommended post-harvest management practices had considerably lower aflatoxin contamination in their stored kernels/grains. Furthermore, the effects of these factors were quantified by multivariate statistical analyses. Training and behavioral changes by farmers in their post-harvest practice minimize aflatoxin contamination and improve food safety. Moreover, if non-trained farmers receive mitigation training, aflatoxin concentration is predicted to decrease by 28.9 μg/kg on average.
In order to understand the underlaying causes of new severe turcicum leaf blight outbreaks in East Africa, a survey was undertaken in Uganda to examine the sorghum-Setosphaeria turcica interaction in terms of disease severity and incidence, the overall fungal population structure, and new resistant resources. Highest disease severities were recorded on caudatum accessions, whereas kafir genotypes were most resistant. The disease was more severe in the most humid farmlands compared to moderately dry agro-ecologies. In districts with wide adoption of the Epuripur variety a very high incidence (100%) of turcicum leaf blight was found. The two S. turcica mating type genes MAT1-1 and MAT1-2 assessed on fungal isolates deriving from both sorghum and maize diseased leaves were found in 20 of 23 districts sampled and in equal proportions. Upon cross inoculation on maize differential lines, four S. turcica isolates were identified as race 1, two as race 2, and one isolate corresponded to race 0 and race 3, respectively. The remaining 10 S. turcica isolates did not cause any disease symptoms on the maize lines assessed. Highly resistant accessions originating from a regional collection were found among the five sorghum races (kafir, guinea, caudatum, bicolor and durra), and are now implemented in new sorghum disease resistance programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.