Abstract. We present a new algorithm for the retrieval of kinetic temperature in the terrestrial mesosphere and lower thermosphere from measurements of CO2 15/•m earth limb emission. Non-local-thermodynamicequilibrium (non-LTE) processes are rigorously included in the new algorithm, necessitated by the prospect of satellite-based limb radiance measurements to be made from the TIMED/SABER platform in the near future between 15 km and 120 km tangent altitude. The algorithm requires 20 seconds to retrieve temperature to better than 3 K accuracy on a desktop computer, easily enabling its use in operational processing of satellite data. We conclude this letter with a study of the sensitivity of the retrieved temperatures to parameters used in the non-LTE models, including sensitivity to the rate constant for physical quenching of CO2 bending mode vibrations by atomic oxygen.
The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) experiment on the Thermosphere‐Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite observed the infrared radiative response of the thermosphere to the solar storm events of April 2002. Large radiance enhancements were observed at 5.3 μm, which are due to emission from the vibration‐rotation bands of nitric oxide (NO). The emission by NO is indicative of the conversion of solar energy to infrared radiation within the atmosphere and represents a “natural thermostat” by which heat and energy are efficiently lost from the thermosphere to space and to the lower atmosphere. We describe the SABER observations at 5.3 μm and their interpretation in terms of energy loss. The infrared enhancements remain only for a few days, indicating that such perturbations to the thermospheric state, while dramatic, are short‐lived.
The SABER instrument was launched onboard the TIMED satellite in December 2001. Vertical profiles of kinetic temperature (Tk) are derived from broadband measurements of CO2 15 μm limb emission, in combination with measurements of CO2 4.3 μm limb emission used to derive CO2 volume mixing ratio (vmr). Infrared emission from the CO2 ro‐vibrational bands are in non‐local thermodynamic equilibrium (non‐LTE) in the mesosphere and lower thermosphere (MLT), requiring new radiation transfer and retrieval methods. In this paper we focus on Tk and show some of the first SABER observations of MLT Tk and compare SABER Tk profiles with rocket falling sphere (FS) measurements taken during the 2002 summer MaCWAVE campaign at Andøya, Norway (69°N, 16°E). The comparisons are very encouraging and demonstrate a significant advance in satellite remote sensing of MLT limb emission and the ability to retrieve Tk under extreme non‐LTE conditions.
[1] We present observations of the infrared radiative cooling by carbon dioxide (CO 2 ) and nitric oxide (NO) in Earth's thermosphere. These data have been taken over a period of 7 years by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the NASA Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite and are the dominant radiative cooling mechanisms for the thermosphere. From the SABER observations we derive vertical profiles of radiative cooling rates (W m −3 ), radiative fluxes (W m −2 ), and radiated power (W). In the period from January 2002 through January 2009, we observe a large decrease in the cooling rates, fluxes, and power consistent with the declining phase of solar cycle 23. The power radiated by NO during 2008 when the Sun exhibited few sunspots was nearly one order of magnitude smaller than the peak power observed shortly after the mission began. Substantial short-term variability in the infrared emissions is also observed throughout the entire mission duration. Radiative cooling rates and radiative fluxes from NO exhibit fundamentally different latitude dependence than do those from CO 2 , with the NO fluxes and cooling rates being largest at high latitudes and polar regions. The cooling rates are shown to be derived relatively independent of the collisional and radiative processes that drive the departure from local thermodynamic equilibrium (LTE) in the CO 2 15 mm and the NO 5.3 mm vibration-rotation bands. The observed NO and CO 2 cooling rates have been compiled into a separate data set and represent a climate data record that is available for use in assessments of radiative cooling in upper atmosphere general circulation models.Citation: Mlynczak, M. G., et al. (2010), Observations of infrared radiative cooling in the thermosphere on daily to multiyear timescales from the TIMED/SABER instrument,
[1] The vast set of near-global and continuous atmospheric measurements made by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument since 2002, including daytime and nighttime kinetic temperature (T k ) from 20 to 105 km, is available to the scientific community. The temperature is retrieved from SABER measurements of the atmospheric 15 mm CO 2 limb emission. This emission separates from local thermodynamic equilibrium (LTE) conditions in the rarefied mesosphere and thermosphere, making it necessary to consider the CO 2 vibrational state non-LTE populations in the retrieval algorithm above 70 km. Those populations depend on kinetic parameters describing the rate at which energy exchange between atmospheric molecules take place, but some of these collisional rates are not well known. We consider current uncertainties in the rates of quenching of CO 2 (u 2 ) by N 2 , O 2 and O, and the CO 2 (u 2 ) vibrational-vibrational exchange to estimate their impact on SABER T k for different atmospheric conditions. The T k is more sensitive to the uncertainty in the latter two, and their effects depend on altitude. The T k combined systematic error due to non-LTE kinetic parameters does not exceed ±1.5 K below 95 km and ±4-5 K at 100 km for most latitudes and seasons (except for polar summer) if the T k profile does not have pronounced vertical structure. The error is ±3 K at 80 km, ±6 K at 84 km and ±18 K at 100 km under the less favorable polar summer conditions. For strong temperature inversion layers, the errors reach ±3 K at 82 km and ±8 K at 90 km. This particularly affects tide amplitude estimates, with errors of up to ±3 K.Citation: García-Comas, M., et al. (2008), Errors in Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) kinetic temperature caused by non-local-thermodynamic-equilibrium model parameters,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.