Abstract. During the measurement campaign FROST (FReezing Of duST), LACIS (Leipzig Aerosol CloudInteraction Simulator) was used to investigate the immersion freezing behavior of size selected, coated and uncoated Arizona Test Dust (ATD) particles with a mobility diameter of 300 nm. Particles were coated with succinic acid (C 4 H 6 O 4 ), sulfuric acid (H 2 SO 4 ) and ammonium sulfate ((NH 4 ) 2 SO 4 ). Ice fractions at mixed-phase cloud temperatures ranging from 233.15 K to 239.15 K (±0.60 K) were determined for all types of particles. In this temperature range, pure ATD particles and those coated with C 4 H 6 O 4 or small amounts of H 2 SO 4 were found to be the most efficient ice nuclei (IN). ATD particles coated with (NH 4 ) 2 SO 4 were the most inefficient IN. Since the supercooled droplets were highly diluted before freezing occurred, a freezing point suppression due to the soluble material on the particles (and therefore in the droplets) cannot explain this observation. Therefore, it is reasonable to assume that the coatings lead to particle surface alterations which cause the differences in the IN abilities. Two different theoretical approaches based on the stochastic and the singular hypotheses were applied to clarify and parameterize the freezing behavior of the particles investigated. Both approaches describe the experimentally determined results, yielding parameters that can subsequently be used to compare our results to those from other studies. HowCorrespondence to: D. Niedermeier (niederm@tropos.de) ever, we cannot clarify at the current state which of the two approaches correctly describes the investigated immersion freezing process. But both approaches confirm the assumption that the coatings lead to particle surface modifications lowering the nucleation efficiency. The stochastic approach interprets the reduction in nucleation rate from coating as primarily due to an increase in the thermodynamic barrier for ice formation (i.e., changes in interfacial free energies). The singular approach interprets the reduction as resulting from a reduced surface density of active sites.
Abstract. During the FROST-2 (FReezing Of duST) measurement campaign conducted at the Leipzig Aerosol Cloud Interaction Simulator (LACIS), we investigated changes in the ice nucleation properties of 300 nm Arizona Test Dust mineral particles following thermochemical processing by varying amounts and combinations of exposure to sulphuric acid vapour, ammonia gas, water vapour, and heat. The processed particles' heterogeneous ice nucleation properties were determined in both the water subsaturated and supersaturated humidity regimes at −30 • C and −25 • C using Colorado State University's continuous flow diffusion chamber. The amount of sulphuric acid coating material was estimated by an aerosol mass spectrometer and from CCN-derived hygroscopicity measurements. The condensation of sulphuric acid decreased the dust particles' ice nucleation ability in proportion to the amount of sulphuric acid added. Heating the coated particles in a thermodenuder at 250 • C -intended to evaporate the sulphuric acid coating -reduced their freezing ability even further. We attribute this behaviour to accelerated acid digestion of ice active surface sites by heat. Exposing sulphuric acid coated dust to ammonia gas produced particles with similarly poor freezing potential; however a portion of their ice nucleation ability could be restored after heating in the thermodenuder. In no case did any combination of thermochemical treatments increase the ice nucleation ability of the coated mineral dust particles Correspondence to: R. C. Sullivan (rsullivan@atmos.colostate.edu) compared to unprocessed dust. These first measurements of the effect of identical chemical processing of dust particles on their ice nucleation ability under both water subsaturated and mixed-phase supersaturated cloud conditions revealed that ice nucleation was more sensitive to all coating treatments in the water subsaturated regime. The results clearly indicate irreversible impairment of ice nucleation activity in both regimes after condensation of concentrated sulphuric acid. This implies that the sulphuric acid coating caused permanent chemical and/or physical modification of the ice active surface sites; the possible dissolution of the coating during droplet activation did not restore all immersion/condensation-freezing ability.
During the FROST-2 (FReezing Of duST) measurement campaign conducted at the Leipzig Aerosol Cloud Interaction Simulator (LACIS), we investigated changes in the ice nucleation properties of 300 nm Arizona test dust mineral particles following thermochemical processing by varying amounts and combinations of exposure to sulphuric acid vapour, ammonia gas, water vapour, and heat. The processed aerosol's heterogeneous ice nucleation properties were determined in both the water subsaturated and supersaturated humidity regimes at −30 °C and −25 °C using Colorado State University's continuous flow diffusion chamber. The amount of sulphuric acid coating material was estimated by an aerosol mass spectrometer and from CCN-derived hygroscopicity measurements. The condensation of sulphuric acid decreased the dust particles' ice nucleation ability in proportion to the amount of sulphuric acid added. Heating the coated particles in a thermodenuder at 250 °C – intended to evaporate the sulphuric acid coating – reduced their freezing ability even further. We attribute this behaviour to accelerated acid digestion of ice active surface sites by heat. Exposing sulphuric acid coated dust to ammonia gas produced particles with similarly poor freezing potential; however a portion of their ice nucleation ability could be restored after heating in the thermodenuder. In no case did any combination of thermochemical treatments increase the ice nucleation ability of the coated mineral dust particles compared to unprocessed dust. These first measurements of the effect of identical chemical processing of dust particles on their ice nucleation ability in both water subsaturated and mixed-phase supersaturated cloud conditions revealed that ice nucleation was more sensitive to all coating treatments in the water subsaturated regime. The results clearly indicate irreversible impairment of ice nucleation activity in both regimes after condensation of concentrated sulphuric acid. This implies that the sulphuric acid coating caused permanent chemical and/or physical modification of the ice active surface sites; the possible dissolution of the coating during droplet activation did not restore all immersion/condensation-freezing ability
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.