Two‐dimensional shear wave elastography (2D‐SWE) has proven to be efficient for the evaluation of liver fibrosis in small to moderate‐sized clinical trials. We aimed at running a larger‐scale meta‐analysis of individual data. Centers which have worked with Aixplorer ultrasound equipment were contacted to share their data. Retrospective statistical analysis used direct and paired receiver operating characteristic and area under the receiver operating characteristic curve (AUROC) analyses, accounting for random effects. Data on both 2D‐SWE and liver biopsy were available for 1,134 patients from 13 sites, as well as on successful transient elastography in 665 patients. Most patients had chronic hepatitis C (n = 379), hepatitis B (n = 400), or nonalcoholic fatty liver disease (n = 156). AUROCs of 2D‐SWE in patients with hepatitis C, hepatitis B, and nonalcoholic fatty liver disease were 86.3%, 90.6%, and 85.5% for diagnosing significant fibrosis and 92.9%, 95.5%, and 91.7% for diagnosing cirrhosis, respectively. The AUROC of 2D‐SWE was 0.022‐0.084 (95% confidence interval) larger than the AUROC of transient elastography for diagnosing significant fibrosis (P = 0.001) and 0.003‐0.034 for diagnosing cirrhosis (P = 0.022) in all patients. This difference was strongest in hepatitis B patients. Conclusion: 2D‐SWE has good to excellent performance for the noninvasive staging of liver fibrosis in patients with hepatitis B; further prospective studies are needed for head‐to‐head comparison between 2D‐SWE and other imaging modalities to establish disease‐specific appropriate cutoff points for assessment of fibrosis stage. (Hepatology 2018;67:260‐272).
Purpose
To automatically detect and isolate areas of low and high stiffness temporal stability in shear wave elastography (SWE) image sequences and define their impact in chronic liver disease (CLD) diagnosis improvement by means of clinical examination study and deep learning algorithm employing convolutional neural networks (CNNs).
Materials and Methods
Two hundred SWE image sequences from 88 healthy individuals (F0 fibrosis stage) and 112 CLD patients (46 with mild fibrosis (F1), 16 with significant fibrosis (F2), 22 with severe fibrosis (F3), and 28 with cirrhosis (F4)) were analyzed to detect temporal stiffness stability between frames. An inverse Red, Green, Blue (RGB) colormap‐to‐stiffness process was performed for each image sequence, followed by a wavelet transform and fuzzy c‐means clustering algorithm. This resulted in a binary mask depicting areas of high and low stiffness temporal stability. The mask was then applied to the first image of the SWE sequence, and the derived, masked SWE image was used to estimate its impact in standard clinical examination and CNN classification. Regarding the impact of the masked SWE image in clinical examination, one measurement by two radiologists was performed in each SWE image and two in the corresponding masked image measuring areas with high and low stiffness temporal stability. Then, stiffness stability parameters, interobserver variability evaluation and diagnostic performance by means of ROC analysis were assessed. The masked and unmasked sets of SWE images were fed into a CNN scheme for comparison.
Results
The clinical impact evaluation study showed that the masked SWE images decreased the interobserver variability of the radiologists’ measurements in the high stiffness temporal stability areas (interclass correlation coefficient (ICC) = 0.92) compared to the corresponding unmasked ones (ICC = 0.76). In terms of diagnostic accuracy, measurements in the high‐stability areas of the masked SWE images (area‐under‐the‐curve (AUC) ranging from 0.800 to 0.851) performed similarly to those in the unmasked SWE images (AUC ranging from 0.805 to 0.893). Regarding the measurements in the low stiffness temporal stability areas of the masked SWE images, results for interobserver variability (ICC = 0.63) and diagnostic accuracy (AUC ranging from 0.622 to 0.791) were poor. Regarding the CNN classification, the masked SWE images showed improved accuracy (ranging from 82.5% to 95.5%) compared to the unmasked ones (ranging from 79.5% to 93.2%) for various CLD stage combinations.
Conclusion
Our detection algorithm excludes unreliable areas in SWE images, reduces interobserver variability, and augments CNN's accuracy scores for many combinations of fibrosis stages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.