The scientific performance of the Planck Low Frequency Instrument (LFI) after one year of in-orbit operation is presented. We describe the main optical parameters and discuss photometric calibration, white noise sensitivity, and noise properties. A preliminary evaluation of the impact of the main systematic effects is presented. For each of the performance parameters, we outline the methods used to obtain them from the flight data and provide a comparison with pre-launch ground assessments, which are essentially confirmed in flight.
In this paper we present the Low Frequency Instrument (LFI), designed and developed as part of the Planck space mission, the ESA programme dedicated to precision imaging of the cosmic microwave background (CMB). Planck-LFI will observe the full sky in intensity and polarisation in three frequency bands centred at 30, 44 and 70 GHz, while higher frequencies (100−850 GHz) will be covered by the HFI instrument. The LFI is an array of microwave radiometers based on state-of-the-art indium phosphide cryogenic HEMT amplifiers implemented in a differential system using blackbody loads as reference signals. The front end is cooled to 20 K for optimal sensitivity and the reference loads are cooled to 4 K to minimise low-frequency noise. We provide an overview of the LFI, discuss the leading scientific requirements, and describe the design solutions adopted for the various hardware subsystems. The main drivers of the radiometric, optical, and thermal design are discussed, including the stringent requirements on sensitivity, stability, and rejection of systematic effects. Further details on the key instrument units and the results of ground calibration are provided in a set of companion papers.
70 GHz radiometer front-end and back-end modules for the Low Frequency Instrument of the European Space Agency's Planck Mission were built and tested. The operating principles and the design details of the mechanical structures are described along with the key InP MMIC low noise amplifiers and phase switches of the units. The units were tested * Corresponding author. in specially designed cryogenic vacuum chambers capable of producing the operating conditions required for Planck radiometers, specifically, a physical temperature of 20 K for the front-end modules, 300 K for the back-end modules and 4 K for the reference signal sources. Test results of the low noise amplifiers and phase switches, the front and back-end modules, and the combined results of both modules are discussed.At 70 GHz frequency, the system noise temperature of the front and back end is 28 K; the effective bandwidth 16 GHz, and the 1/f spectrum knee frequency is 38 mHz. The test results indicate state-of-the-art performance at 70 GHz frequency and fulfil the Planck performance requirements.
Abstract. We report a successful VLBI observation at 147 GHz (2.1 mm) on the 3 100 km long baseline between the telescopes at Metsähovi (Finland) and Pico Veleta (Spain). The sources 3C 273B and 3C 279 were detected with a SNR of ∼10. For these sources we estimate that 25-30% of the total flux is detectable as correlated flux on the 3 100 km baseline, which gives at 147 GHz a lower limit of the brightness temperature of the inner VLBI jet region of ∼1×10 10 K.
The Low Frequency Instrument (LFI) on-board the ESA Planck satellite carries eleven radiometer subsystems, called radiometer chain assemblies (RCAs), each composed of a pair of pseudo-correlation receivers. We describe the on-ground calibration campaign performed to qualify the flight model RCAs and to measure their pre-launch performances. Each RCA was calibrated in a dedicated flight-like cryogenic environment with the radiometer front-end cooled to 20 K and the back-end at 300 K, and with an external input load cooled to 4 K. A matched load simulating a blackbody at different temperatures was placed in front of the sky horn to derive basic radiometer properties such as noise temperature, gain, and noise performance, e.g. 1/ f noise. The spectral response of each detector was measured as was their susceptibility to thermal variation. All eleven LFI RCAs were calibrated. Instrumental parameters measured in these tests, such as noise temperature, bandwidth, radiometer isolation, and linearity, provide essential inputs to the Planck-LFI data analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.