The major infrastructures of nuclear physics in Europe adopted the technology of electron cyclotron resonance (ECR) ion sources for the production of heavy-ion beams. Most of them use 14 GHz electron cyclotron resonance ion sources (ECRISs), except at INFN-LNS, where an 18 GHz superconducting ECRIS is in operation. In the past five years it was demonstrated, in the frame of the EU-FP5 RTD project called "Innovative ECRIS," that further enhancement of the performances requires a higher frequency (28 GHz and above) and a higher magnetic field (above 2.2 T) for the hexapolar field. Within the EU-FP6 a joint research activity named ISIBHI has been established to build by 2008 two different ion sources, the A-PHOENIX source at LPSC Grenoble, reported in another contribution, and the multipurpose superconducting ECRIS (MS-ECRIS), based on fully superconducting magnets, able to operate in High B mode at a frequency of 28 GHz or higher. Such a development represents a significant step compared to existing devices, and an increase of typically a factor of 10 for the intensity is expected (e.g., 1 emA for medium charge states of heavy ions, or hundreds of e$\mu$A of fully stripped light ions, or even 1 e$\mu$A of charge states above $50^+$ for the heaviest species). The challenging issue is the very high level of magnetic field, never achieved by a minimum B trap magnet system; the maximum magnetic field of MS-ECRIS will be higher than 4 or 5 T for the axial field and close to 2.7 T for the hexapolar field. The detailed description of the MS-ECRIS project and of its major constraints will be given along with the general issues of the developments under way
Intense heavy ion beam production with electron cyclotron resonance (ECR) ion sources is a common requirement for many of the accelerators under construction in Europe and elsewhere. An average increase of about one order of magnitude per decade in the performance of ECR ion sources was obtained up to now since the time of pioneering experiment of R. Geller at CEA, Grenoble, and this trend is not deemed to get the saturation at least in the next decade, according to the increased availability of powerful magnets and microwave generators. Electron density above 10(13) cm(-3) and very high current of multiply charged ions are expected with the use of 28 GHz microwave heating and of an adequate plasma trap, with a B-minimum shape, according to the high B mode concept [S. Gammino and G. Ciavola, Plasma Sources Sci. Technol. 5, 19 (1996)]. The MS-ECRIS ion source has been designed following this concept and its construction is underway at GSI, Darmstadt. The project is the result of the cooperation of nine European institutions with the partial funding of EU through the sixth Framework Programme. The contribution of different institutions has permitted to build in 2006-2007 each component at high level of expertise. The description of the major components will be given in the following with a view on the planning of the assembly and commissioning phase to be carried out in fall 2007. An outline of the experiments to be done with the MS-ECRIS source in the next two years will be presented.
The influence of an axial magnetic field on the electron temperature of a vacuum arc plasma was studied experimentally and theoretically for moderate discharge currents of 400-600 A, magnetic flux densities of 0-50 mT, and various cathode materials such as uranium, titanium, and carbon. Experiments were performed using the vacuum arc ion source (VARIS) and the electron energy spectra were measured with a 127 electrostatic cylinder spectrometer. The electron temperature in the inter-electrode gap of a vacuum arc was calculated from an energy balance equation that was supplemented by an magnethydrodynamic approach of the plasma flow. The plasma flow is constricted by an external axial magnetic field instead of the free spherical plasma flow in its absence, leading to an increase in the electron temperature. The influence of different input parameters such as the magnetic flux density, arc current, the ion to arc current ratio, the initial plasma jet radius, and the distance from the cathode on the electron temperature was studied and compared with the experimental results.Index Terms-Axial magnetic field, electron energy distribution, electron temperature, vacuum arcs.
The ECR ion sources are able to produce a wide variety of highly charged metallic ion beams thanks to the development of different techniques (ovens, sputtering, direct insertion, metal ions from volatile compounds (MIVOC)). In the case of the ovens, the sticking of the hot vapors on the surface of the plasma chamber leads to high material consumption rates. For elements like Ca, a tantalum liner inserted inside the chamber can be used to limit this phenomenon. The modeling of temperature distribution inside the chamber with and without the liner was carried out with COMSOL-multiphysics code. Results of simulation and the comparison with experiments performed at INFN-Legnaro National Laboratories with Ca beams are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.