Many drugs used for non-cardiovascular and cardiovascular purposes, such as sotalol, have the side effect of prolonging cardiac repolarization, which can trigger life-threatening cardiac arrhythmias by inhibiting the potassium-channel IKr (KCNH2). On the electrocardiogram (ECG), IKr inhibition induces an increase in QTc and Tpeak-Tend (TpTe) interval and a decrease of T wave maximal amplitude (TAmp). These changes vary markedly between subjects, suggesting the existence of predisposing genetic factors.990 healthy individuals, prospectively challenged with an oral 80mg sotalol dose, were monitored for changes in ventricular repolarization on ECG between baseline and 3 hours post dosing. QTc and TpTe increased by 5.5±3.5% and 15±19.6%, respectively, and TAmp decreased by 13.2±15.5%. A principal-component analysis derived from the latter ECG changes was performed. A random subsample of 489 individuals were subjected to a genome-wide-association analysis where 8,306,856 imputed single nucleotide polymorphisms (SNPs) were tested for association with QTc, TpTe and TAmp modulations, as well their derived principal-components, to search for common genetic variants associated with sotalol-induced IKr inhibition. None of the studied SNPs reached the statistical threshold for genome-wide significance.This study supports the lack of common variants with larger effect sizes than one would expect based on previous ECG genome-wide-association studies.Clinical trial registration: ClinicalTrials.gov NCT00773201
We investigated the effect of gadopiclenol, a new gadolinium-based contrast agent, on the QTc interval at clinical and supraclinical dose, considering the relative hyperosmolarity of this product. Methods: This was a single centre, randomized, double-blind, placebo-and positivecontrolled, 4-way crossover study. Forty-eight healthy male and female subjects were included to receive single intravenous (i.v.) administrations of gadopiclenol at the clinical dose of 0.1 mmol kg −1 , standard for current gadolinium-based contrast agents, the supraclinical dose of 0.3 mmol kg −1 , placebo and a single oral dose of 400 mg moxifloxacin. Results: The largest time-matched placebo-corrected, mean change from-baseline in QTcF (ΔΔQTcF) was observed 3 hours after administration of 0.1 mmol kg −1 gadopiclenol (2.39 ms, 90% confidence interval [CI]: 0.35, 4.43 ms) and 5 minutes after administration of 0.3 mmol kg −1 (4.81 ms, 90%CI: 2.84, 6.78 ms). The upper limit of the 90% CI was under the threshold of 10 ms, demonstrating no significant effect of gadopiclenol on QTc interval. From 1.5 to 4 hours postdose moxifloxacin, the lower limit of the 90% CI of ΔΔQTcF exceeded 5 ms demonstrating assay sensitivity. Although there was a positive slope, the concentration-response analysis estimated that the values of ΔΔQTcF at the maximal concentration of gadopiclenol at 0.1 and 0.3 mmol kg −1 were 0.41 and 2.23 ms, respectively, with the upper limit of the 90% CI not exceeding 10 ms. No serious or severe adverse events or treatment discontinuations due to adverse events were reported. Conclusion: This thorough QT/QTc study demonstrated that gadopiclenol did not prolong the QT interval at clinical and supraclinical doses and was well tolerated in healthy volunteers. The positive slope of the QTc prolongation vs concentration relationship suggests that hyperosmolarity could be associated with QTc prolongation. However, the amplitude of this effects is unlikely to be associated with proarrhythmia.
Contraceptive pills are associated with variable drug-induced alterations of ventricular repolarization in healthy nonmenopausal women. Drospirenone, an antiandrogenic pill, was associated with increased sotalol-induced QTc prolongation, although absolute QTc prolongation was modest. This finding was supported by the European pharmacovigilance database, which showed a higher reporting rate of suspected OC-induced ventricular arrhythmias on drospirenone compared with levonorgestrel. More data are required on whether antiandrogenic OCs lead to clinically significant adverse events in patients taking QTc-prolonging drugs.
Several antimalarial drugs are known to prolong ventricular repolarization as evidenced by QT/QTc interval prolongation. This can lead to Torsades de Pointes, a potentially lethal ventricular arrhythmia. Whether this is the case with artemisinin-based combination therapies (ACTs) remains uncertain. Assessment of the extent of QTc prolongation with antimalarials is hampered by important variations of heart rate during malaria crises and previous studies have reported highly variable values of QTc prolongations with ACTs. We assessed QTc prolongation with four ACTs, using high quality ECG recording and measurement techniques, during the first episode of malaria in 2,091 African patients enrolled in the WANECAM study which also monitored clinical safety. Using an original and robust method of QTc assessment, independent from heart rate changes and from the method of QT correction, we were able to accurately assess the extent of mean maximum QTc prolongation with the four ACTs tested. There was no evidence of proarrhythmia with any treatment during the study although dihydroartemisinin-piperaquine, artesunate-amodiaquine and artemether-lumefantrine significantly prolonged QTc. The extent of prolongation of ventricular repolarization can be accurately assessed in studies where heart rate changes impede QTc assessment.
QT/QTc interval prolongation reflects delayed cardiac repolarization which can lead to Torsade de Pointes and sudden death. Many antimalarial drugs prolong QT/QTc interval. However, due to confounding factors in patients with malaria, the precise extent of this effect has been found to be highly variable among studies. We compared the effects of dihydroartemisinin-piperaquine phosphate (DHA-PQP) and artemether-lumefantrine (A-L) on QT interval duration in healthy volunteers. In this randomized, parallel groups, active moxifloxacin- and placebo-controlled study, prolongation of the QT/QTc interval following treatment with DHA-PQP in fasted and fed condition and A-L in fed state was investigated in healthy subjects (n = 287; Clinicaltrials.gov: NCT01103830). DHA-PQP resulted in significant mean (95% confidence interval (CI)) maximum increases in QTc Fridericia (QTcF) of 21.0 ms (15.7, 26.4) for DHA-PQP fasted, 35.9 ms (31.1, 40.6) for DHA-PQP high-fat/low-caloric and 46.0 ms (39.6, 52.3) for DHA-PQP high-fat/high-caloric breakfast. For A-L, the largest difference from baseline relative to placebo was 9.9 ms (95% CI: 6.8, 12.9). Increases in QTcF related to maximum plasma concentrations of piperaquine. Moxifloxacin demonstrated assay sensitivity. Increases in QTcF following DHA-PQP and A-L were clinically relevant. Food increased piperaquine exposure and QTcF interval prolongation emphasizing the need to administer DHA-PQP in the fasting state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.