SummaryCell banking, disease modeling, and cell therapy applications have placed increasing demands on hiPSC technology. Specifically, the high-throughput derivation of footprint-free hiPSCs and their expansion in systems that allow scaled production remains technically challenging. Here, we describe a platform for the rapid, parallel generation, selection, and expansion of hiPSCs using small molecule pathway inhibitors in stage-specific media compositions. The platform supported efficient and expedited episomal reprogramming using just OCT4/SOX2/SV40LT combination (0.5%–4.0%, between days 12 and 16) in a completely feeder-free environment. The resulting hiPSCs are transgene-free, readily cultured, and expanded as single cells while maintaining a homogeneous and genomically stable pluripotent population. hiPSCs generated or maintained in the media compositions described exhibit properties associated with the ground state of pluripotency. The simplicity and robustness of the system allow for the high-throughput generation and rapid expansion of a uniform hiPSC product that is applicable to industrial and clinical-grade use.
Human induced pluripotent stem cells (iPSCs) represent a scalable source of potentially any cell type for disease modeling and therapeutic screening. We have a particular interest in modeling skeletal muscle from various genetic backgrounds; however, efficient and reproducible methods for the myogenic differentiation of iPSCs have not previously been demonstrated. Ectopic myogenic differentiation 1 (MyoD) expression has been shown to induce myogenesis in primary cell types, but the same effect has been unexpectedly challenging to reproduce in human iPSCs. In this study, we report that optimization of culture conditions enabled direct MyoD-mediated differentiation of iPSCs into myoblasts without the need for an intermediate step or cell sorting. MyoD induction mediated efficient cell fusion of mature myocytes yielding multinucleated myosin heavy chain-positive myotubes. We applied the same approach to dystrophic iPSCs, generating 16 iPSC lines from fibroblasts of four patients with Duchenne and Becker muscular dystrophies. As seen with iPSCs from healthy donors, within 36 hours from MyoD induction there was a clear commitment toward the myogenic identity by the majority of iPSCs in culture (50%-70%). The patient iPSC-derived myotubes successfully adopted the skeletal muscle program, as determined by global gene expression profiling, and were functionally responsive to treatment with hypertrophic proteins insulin-like growth factor 1 (IGF-1) and wingless-type MMTV integration site family, member 7A (Wnt7a), which are being investigated as potential treatments for muscular dystrophy in clinical and preclinical studies, respectively. Our results demonstrate that iPSCs have no intrinsic barriers preventing MyoD from inducing efficient and rapid myogenesis and thus providing a scalable source of normal and dystrophic myoblasts for use in disease modeling and drug discovery.
Human induced pluripotent stem cells (hiPSCs) hold enormous potential, however several obstacles impede their translation to industrial and clinical applications. Here we describe a platform to efficiently generate, characterize and maintain single cell and feeder-free (FF) cultured hiPSCs by means of a small molecule cocktail media additive. Using this strategy we have developed an effective multiplex sorting and high-throughput selection platform where individual clonal hiPSC lines are readily obtained from a pool of candidate clones, expanded and thoroughly characterized. By promoting survival and self-renewal, the selected hiPSC clones can be rapidly expanded over multiple FF, single-cell passages while maintaining their pluripotency and genomic stability as demonstrated by trilineage differentiation, karyotype and copy number variation analysis. This study provides a robust platform that increases efficiency, throughput, scale and quality of hiPSC generation and facilitates the industrial and clinical use of iPSC technology.
hiPSC derivation and selection remains inefficient; with selection of high quality clones dependent on extensive characterization which is not amenable to high-throughput (HTP) approaches. We recently described the use of a cocktail of small molecules to enhance hiPSC survival and stability in single cell culture and the use of flow cytometry cell sorting in the HTP-derivation of hiPSCs. Here we report an enhanced protocol for the isolation of bona fide hiPSCs in FACS-based selection using an optimized combination of cell surface markers including CD30. Depletion of CD30+ cells from reprogramming cultures almost completely abolished the NANOG and OCT4 positive sub-population, suggesting it is a pivotal marker of pluripotent cells. Combining CD30 to SSEA4 and TRA-1-81 in FACS greatly enhanced specificity and efficiency of hiPSC selection and derivation. The current method allows for the efficient and automated, prospective isolation of high-quality hiPSC from the reprogramming cell milieu.
A summit on cellular therapy for cancer discussed and presented advances related to the use of adoptive cellular therapy for melanoma and other cancers. The summit revealed that this field is advancing rapidly. Conventional cellular therapies, such as tumor infiltrating lymphocytes (TIL), are becoming more effective and more available. Gene therapy is becoming an important tool in adoptive cell therapy. Lymphocytes are being engineered to express high affinity T cell receptors (TCRs), chimeric antibody-T cell receptors (CARs) and cytokines. T cell subsets with more naïve and stem cell-like characteristics have been shown in pre-clinical models to be more effective than unselected populations and it is now possible to reprogram T cells and to produce T cells with stem cell characteristics. In the future, combinations of adoptive transfer of T cells and specific vaccination against the cognate antigen can be envisaged to further enhance the effectiveness of these therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.